Outline of the lecture

1 Grayscale images

2 Operators on grayscale images

Graph-based image processing

 Grayscale images — (Professor version)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Definition

- Let \mathbb{V} be a set of values
- ▶ An image (on E with values in \mathbb{V}) is a map I from E into \mathbb{V}
- I(x) is called the value of the point (pixel) x for I

Definition

- Let \mathbb{V} be a set of values
- ▶ An image (on E with values in \mathbb{V}) is a map I from E into \mathbb{V}
- I(x) is called the value of the point (pixel) x for I

Example

• Images with values in \mathbb{R}^+ : euclidean distance map D_X to a set $X \in \mathcal{P}(E)$

► Images with values in Z⁺: distance map D_X for a geodesic distance in a uniform network

Grayscale images

 \blacktriangleright We denote by ${\mathcal I}$ the set of all images with integer values on E

▶ An image in \mathcal{I} is also called grayscale (or graylevel) image

Grayscale images

- \blacktriangleright We denote by ${\mathcal I}$ the set of all images with integer values on E
- An image in \mathcal{I} is also called grayscale (or graylevel) image
- We denote by I an arbitrary image in \mathcal{I}
- ► The value I(x) of a point x ∈ E is also called the gray level of x, or the gray intensity at x

Topographical interpretation

► An grayscale image *I* can be seen as a topographical relief

• I(x) is called the altitude of x

Topographical interpretation

► An grayscale image *I* can be seen as a topographical relief

- I(x) is called the altitude of x
- Bright regions: mountains, crests, hills
- Dark regions: bassins, valleys

Level set

Definition

• Let $k \in \mathbb{Z}$

The k-level set (or k-section, or k-threshold) of I, denoted by Ik, is the subset of E defined by:

 $\bullet \ I_k = \{x \in E \mid I(x) \ge k\}$

Level set

Definition

• Let $k \in \mathbb{Z}$

The k-level set (or k-section, or k-threshold) of I, denoted by I_k, is the subset of E defined by:
 I_k = {x ∈ E | I(x) ≥ k}

Property

$$\blacktriangleright \ \forall k,k' \in \mathbb{Z}, \ k' > k \implies I_{k'} \subseteq I_k$$

►
$$I(x) = \max\{k \in \mathbb{Z} \mid x \in I_k\}$$

Graph-based image processing

— Operators on grayscale images — (Professor version)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Definition (flat operators)

- Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on I, also denoted by γ, defined by:

$$\blacktriangleright \forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\gamma(I)]_k = \gamma(I_k)$$

Definition (flat operators)

• Let γ be an increasing operator on E

The stack operator induced by γ is the operator on I, also denoted by γ, defined by:

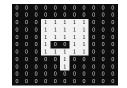
$$\blacktriangleright \forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\gamma(I)]_k = \gamma(I_k)$$

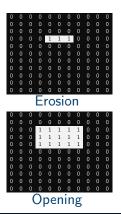
<u>Exercice</u>. Show that a same construction cannot be used to derive an operator on \mathcal{I} from an operator on E that is not increasing.

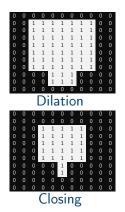
Property

- Let γ be an increasing operator on E
- $[\gamma(I)](x) = \max\{k \in \mathbb{Z} \mid x \in \gamma(I_k)\}$

MM: basic operators







Silvio Guimarães - Professor version

Graph

Illustration: dilation on \mathcal{I} by Γ

1

*I*₈₀

*I*₁₅₀

*I*₂₂₀

 $\delta_{\Gamma}(I)$

 $\delta_{\Gamma}(I)_{80}$

 $\delta_{\Gamma}(I)_{150}$

 $\delta_{\Gamma}(I)_{220}$

Illustration: erosion on \mathcal{I} by Γ

1

*I*₈₀

*I*₁₅₀

*I*₂₂₀

Illustration: opening on ${\mathcal I}$ by Γ

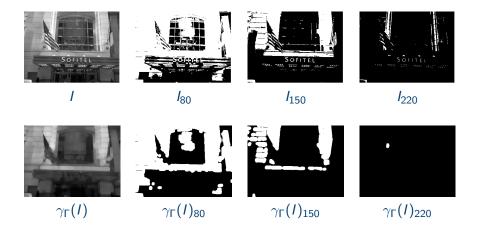


Illustration: closing on ${\mathcal I}$ by Γ

1

*I*₈₀

*I*₁₅₀

*I*₂₂₀

 $\phi_{\Gamma}(I)$

 $\phi_{\Gamma}(I)_{150}$

 $\phi_{\Gamma}(I)_{220}$

Property (duality)

Let Γ be a structuring element

$$\bullet \ \epsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$$

Property (duality)

► Let
$$\Gamma$$
 be a structuring element
► $\epsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Property

- Let Γ be a structuring element
- $[\delta_{\Gamma}(I)](x) = \max\{I(y) \mid y \in \Gamma^{-1}(x)\}$
- $[\epsilon_{\Gamma}(I)](x) = \min\{I(y) \mid y \in \Gamma(x)\}$

 Write an algorithm whose data are a graph (E, Γ) and a grayscale image I on E and whose result is the image I' = δ_Γ(I') Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me the slides used in the Morpho, Graph and Image course. Some slides of the Graph-based Image Processing course at PPGINF/PUC Minas under supervision of Prof. Silvio Guimarães will be adapted versions of that course.

- Course MorphoGraph and Imagery https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/
- Jean Cousty
 - ESIEE Paris, Département Informatique
 - Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
 - E-mail: j.cousty@esiee.fr