Find out the difference(s)?

Find out the difference(s)?

Graph-based image processing — Connectivity in graphs —

(Professor version)

(Connectivity in graphs)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Graph-based image processing

— Path —

(Professor version)

(Connectivity in graphs)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

- Let $G = (E, \Gamma)$ be a graph, and let x and y be two vertices in E
- A path from x to y (in G) is a sequence $\pi = (x_0, ..., x_\ell)$ of vertices in E such that

•
$$\forall i \in \{1,\ldots,\ell\}, x_i \in \Gamma(x_{i-1})$$

•
$$x_0 = x$$
 and $x_\ell = y$

- Let $G = (E, \Gamma)$ be a graph, and let x and y be two vertices in E
- A path from x to y (in G) is a sequence π = (x₀,..., x_ℓ) of vertices in E such that
 ∀i ∈ {1,...,ℓ}, x_i ∈ Γ(x_{i-1})

•
$$x_0 = x$$
 and $x_\ell = y$

Example	
$\pi = (1,2,3)$ is a path	ath

Definition

Let G = (E, Γ) be a graph, and let x and y be two vertices in E
A path from x to y (in G) is a sequence π = (x₀,..., x_ℓ) of

vertices in E such that

• $\forall i \in \{1, \ldots, \ell\}, x_i \in \Gamma(x_{i-1})$

•
$$x_0 = x$$
 and $x_\ell = y$

• If
$$\pi = (x_0, \ldots, x_\ell)$$
 is a path, ℓ is called its length

Example

 $\pi = (1,2,3)$ is a path of length 2

► A path of length 0 is called a trivial path

• A path of length 0 is called a trivial path

▶ A non-trivial path $\pi = (x_0, ..., x_\ell)$ is called a circuit if $x_0 = x_\ell$

Example

(3) is a trivial path

- A path of length 0 is called a trivial path
- ▶ A non-trivial path $\pi = (x_0, ..., x_\ell)$ is called a circuit if $x_0 = x_\ell$
- A path π = (x₀,..., x_ℓ) is called elementary if any two of its vertices are distinct (except possibly x₀ and x_ℓ): ∀i, j ∈ {0,...,ℓ}, i ≠ j ⇒ x_i ≠ x_j (where {i, j} ≠ {0, ℓ})

- ► (3) is a trivial path
- ► (1,2,3,1) is a circuit that is elementary

- A path of length 0 is called a trivial path
- ▶ A non-trivial path $\pi = (x_0, ..., x_\ell)$ is called a circuit if $x_0 = x_\ell$
- ▶ A path $\pi = (x_0, ..., x_\ell)$ is called elementary if any two of its vertices are distinct (except possibly x_0 and x_ℓ): $\forall i, j \in \{0, ..., \ell\}$, $i \neq j \implies x_i \neq x_j$ (where $\{i, j\} \neq \{0, \ell\}$)

- ► (3) is a trivial path
- ► (1,2,3,1) is a circuit that is elementary
- ► (1,3,1,2,3,1) is a circuit that is not elementary

• Any path π from x to y contains an elementary path from x to y

- Any path π from x to y contains an elementary path from x to y
- The length of an elementary circuit is less than n (where n = |E|)

- Any path π from x to y contains an elementary path from x to y
- The length of an elementary circuit is less than n (where n = |E|)
- ► The length of an elementary path which is not a circuit is less than n − 1

• Let
$$G_s = (E, \Gamma_s)$$
 be the symmetric closure of G

- Let $G_s = (E, \Gamma_s)$ be the symmetric closure of G
- ► Any path in G_s is called an undirected path (in G)

- Let $G_s = (E, \Gamma_s)$ be the symmetric closure of G
- Any path in G_s is called an undirected path (in G)
- A cycle (in G) is a circuit in G₅ that does not pass twice by the same edge

- Let $G_s = (E, \Gamma_s)$ be the symmetric closure of G
- Any path in G_s is called an undirected path (in G)
- A cycle (in G) is a circuit in G₅ that does not pass twice by the same edge

Remark. If $\pi = (x_0, \ldots, x_\ell)$ is an undirected path, then $\pi' = (x_\ell, \ldots, x_0)$ is an undirected path (since (E, Γ_s) is a symmetric graph, which implies that $x_i \in \Gamma_s(x_{i-1}) \Leftrightarrow x_{i-1} \in \Gamma_s(x_i)$)

Illustration: path and undirected path, circuit and cycles

- (1,2,1) is not a path
- ▶ (1,2,3,1,2,4) is a path
- (4, 2, 1) is an undirected path
- ▶ (1,3,2,1) is not a circuit
- ▶ (1,3,1) is not a cycle

- ► (1,2,3) is a path
- ▶ (4,2,1) is not a path
- ► (1,2,3,1) is a circuit
- ▶ (1, 3, 2, 1) is a cycle

Graph-based image processing

— Connectivity — (Professor version)

(Connectivity in graphs)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Connected component

Definition

Let x ∈ E. The connected component of G containing x is the subset C_x of E defined by:

• $C_x = \{y \in E \mid \text{there exists an undirected path from } x \text{ to } y\}$

Connected component

Definition

Let x ∈ E. The connected component of G containing x is the subset C_x of E defined by:

• $C_x = \{y \in E \mid \text{there exists an undirected path from } x \text{ to } y\}$

Connected component as equivalence classes

Property

1.
$$\forall x \in E, x \in C_x$$
 reflexivity
2. $\forall x, y \in E, y \in C_x \implies x \in C_y$ symmetry
3. $\forall x, y, z \in E, [y \in C_x \text{ and } z \in C_y] \implies z \in C_x$ transitivity

Proof.

- 1. $\forall x \in E$, (x) is a (trivial) undirected path, thus $x \in C_x$
- 2. $y \in C_x \implies \exists$ an undirected path $\pi = (x_0, \dots, x_\ell)$ from x to y $\implies \pi' = (x_\ell, \dots, x_0)$ is an undirected path from y to x $\implies x \in C_y$
- 3. $[y \in C_x \text{ and } z \in C_y] \implies [\exists \text{ an undirected path } \pi = (x_0, \dots, x_\ell)$ from x to y and \exists an undirected path $\pi' = (y_0, \dots, y_m)$ from y to $z] \implies \pi'' = (x_0, \dots, x_\ell, y_1, \dots, y_m)$ is an undirected path from x to $z \implies z \in C_x$

Strongly connected component

- Let $x \in E$. The strongly connected component (of G) containing x is the subset C'_x of E defined by
 - $C'_x = \{y \in E \mid \exists a \text{ path from } x \text{ to } y \text{ and } \exists a \text{ path from } y \text{ to } x\}$

Strongly connected component

Definition

Let x ∈ E. The strongly connected component (of G) containing x is the subset C'_x of E defined by
 C'_x = {y ∈ E | ∃ a path from x to y and ∃ a path from y to x}

Exercise. Are the strongly connected components of a graphs equivalence classes? Proof or counter-example?

Graph-based image processing

— Algorithms — (Professor version)

(Connectivity in graphs)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas |

- We will first study a characterization of connected components and of strongly connected components based on morphological dilation
- This will allow us to propose efficient algorithm to compute them

The morphological dilation $\delta_{\Gamma}(X)$ of a subset X of E is th union of the sets of successors of all vertices in X

Iterated operators

- Let γ be an operator and $i \in \mathbb{N}$
- \blacktriangleright We denote by γ^i the operator defined by

1.
$$\gamma^{i} = \gamma \gamma^{i-1}$$

2. $\gamma^{0} = Id$ (i.e. $\forall X \subseteq E, \gamma^{0}(X) = X$)

Iterated operators

- Let γ be an operator and $i \in \mathbb{N}$
- \blacktriangleright We denote by γ^i the operator defined by

1.
$$\gamma^{i} = \gamma \gamma^{i-1}$$

2. $\gamma^{0} = Id$ (*i.e.* $\forall X \subseteq E, \gamma^{0}(X) = X$)

Example (iterated dilation)

1.
$$\delta_{\Gamma}^{0}(X) = X$$

2. $\delta_{\Gamma}^{1}(X) = \delta_{\Gamma}(\delta_{\Gamma}^{0}(X)) = \delta_{\Gamma}(X)$
3. $\delta_{\Gamma}^{2}(X) = \delta_{\Gamma}(\delta_{\Gamma}^{1}(X)) = \delta_{\Gamma}(\delta_{\Gamma}(X))$
4. $\delta_{\Gamma}^{3}(X) = \delta_{\Gamma}(\delta_{\Gamma}^{2}(X)) = \delta_{\Gamma}(\delta_{\Gamma}(\delta_{\Gamma}(X)))$
5. ...
6. $\delta_{\Gamma}^{i}(X) = \delta_{\Gamma}(\delta_{\Gamma}^{i-1}(X)) = \delta_{\Gamma}(\dots \delta_{\Gamma}(X))$

..)

Illustration: iterated dilation

•
$$X = \delta_{\Gamma}^{0}(X) = \{1\}$$

Illustration: iterated dilation

$$\bullet \ X = \delta_{\Gamma}^0(X) = \{1\}$$

$$\bullet \ \delta^1_{\Gamma}(X) = \{2\}$$

Illustration: iterated dilation

$$\blacktriangleright X = \delta^0_{\Gamma}(X) = \{1\}$$

•
$$\delta^1_{\Gamma}(X) = \{2\}$$

•
$$\delta^2_{\Gamma}(X) = \{3,4\}$$

- Let $x \in E$ and $i \in \mathbb{N}$
- ► The two following equalities hold true
 - $\delta^i_{\Gamma}(\{x\}) = \{y \in E \mid \exists a \text{ path from } x \text{ to } y \text{ of length } i\}$
 - $\delta_{\Gamma^{-1}}^i(\{x\}) = \{y \in E \mid \exists a \text{ path from } y \text{ to } x \text{ of length } i\}$

- Let $x \in E$ and $i \in \mathbb{N}$
- The two following equalities hold true
 - $\delta^i_{\Gamma}(\{x\}) = \{y \in E \mid \exists a \text{ path from } x \text{ to } y \text{ of length } i\}$
 - $\delta_{\Gamma^{-1}}^i(\{x\}) = \{y \in E \mid \exists a \text{ path from } y \text{ to } x \text{ of length } i\}$

- We define for any $X \subseteq E$ and any $p \in \mathbb{N}$
 - $\bullet \ \hat{\delta}^{p}_{\Gamma}(X) = \cup \{ \delta^{i}_{\Gamma}(X) \mid i \in \{0, \dots, p\} \}$

- Let $x \in E$ and $i \in \mathbb{N}$
- The two following equalities hold true
 - $\delta^i_{\Gamma}(\{x\}) = \{y \in E \mid \exists a \text{ path from } x \text{ to } y \text{ of length } i\}$
 - $\delta_{\Gamma^{-1}}^i(\{x\}) = \{y \in E \mid \exists a \text{ path from } y \text{ to } x \text{ of length } i\}$

- We define for any $X \subseteq E$ and any $p \in \mathbb{N}$
 - $\hat{\delta}^p_{\Gamma}(X) = \cup \{ \delta^i_{\Gamma}(X) \mid i \in \{0, \dots, p\} \}$
- The set $\hat{\delta}^{p}_{\Gamma}(X)$ is called the pre-closure of X of rank p

Transitive closure and paths

Corolary

• Let $x \in E$

► The two following equalities hold true

- ▶ $\hat{\delta}^{p}_{\Gamma}(\{x\}) = \{y \in E \mid \exists \text{ a path from } x \text{ to } y \text{ of length } \leq p\}$
- ► $\delta_{\Gamma^{-1}}^{\hat{p}}(\{x\}) = \{y \in E \mid \exists \text{ a path from } y \text{ to } x \text{ of length } \leq p\}$

Transitive closure and paths

Corolary

• Let $x \in E$

► The two following equalities hold true

- ▶ $\hat{\delta}^{p}_{\Gamma}(\{x\}) = \{y \in E \mid \exists \text{ a path from } x \text{ to } y \text{ of length } \leq p\}$
- ► $\delta_{\Gamma^{-1}}^{\hat{p}}(\{x\}) = \{y \in E \mid \exists \text{ a path from } y \text{ to } x \text{ of length } \leq p\}$

• Let $x \in E$, the (transitive) closure of $\{x\}$ is the set

• $\delta^{\hat{\infty}}_{\Gamma}(\{x\}) = \{y \in E \mid \exists \text{ a path from } x \text{ to } y\}$

Transitive closure and paths

Corolary

• Let $x \in E$

► The two following equalities hold true

- ▶ $\hat{\delta}^{p}_{\Gamma}(\{x\}) = \{y \in E \mid \exists \text{ a path from } x \text{ to } y \text{ of length } \leq p\}$
- ► $\delta_{\Gamma^{-1}}^{\hat{p}}(\{x\}) = \{y \in E \mid \exists \text{ a path from } y \text{ to } x \text{ of length } \leq p\}$

Let x ∈ E, the (transitive) closure of {x} is the set
 δ_Γ[∞]({x}) = {y ∈ E | ∃ a path from x to y}

<u>Exercise</u>. Prove that $\delta_{\Gamma}^{\hat{\infty}}(\{x\}) = \delta_{\Gamma}^{\hat{n}-1}(\{x\})$ (where n = |E|)

Illustration: transitive closure

•
$$X = \delta^0_{\Gamma}(X) = \{1\}$$

•
$$X = \hat{\delta}^0_{\Gamma}(X) = \{1\}$$

Illustration: transitive closure

$$X = \hat{\delta}^0_{\Gamma}(X) = \{1\}$$
$$\hat{\delta}^1_{\Gamma}(X) = \{1, 2\}$$

Illustration: transitive closure

Example

- $\blacktriangleright X = \delta^0_{\Gamma}(X) = \{1\}$
- $\delta^1_{\Gamma}(X) = \{2\}$
- $\delta^2_{\Gamma}(X) = \{3, 4\}$

• $X = \hat{\delta_{\Gamma}^0}(X) = \{1\}$

$$\bullet \ \delta^1_{\Gamma}(X) = \{1,2\}$$

• $\hat{\delta}_{\Gamma}^{2}(X) = \{1, 2, 3, 4\} = \hat{\delta}_{\Gamma}^{7}(X)$

 Let x ∈ E. Let C_x and C'_x be respectively the connected components and the strongly connected components containing x

- Let x ∈ E. Let C_x and C'_x be respectively the connected components and the strongly connected components containing x
- The two following equalities hold true

•
$$C'_{x} = \delta_{\Gamma}^{\hat{n-1}}(\{x\}) \cap \delta_{\Gamma^{-1}}^{\hat{n-1}}(\{x\})$$

•
$$C_x = \delta_{\Gamma_s}^{\hat{n}-1}(\{x\}) = \delta_{\Gamma_s}^{\hat{n}-1}(\{x\})$$

• where n = |E| and Γ_s is the symmetric closure of Γ

- ► Let $x \in E$. Let C_x and C'_x be respectively the connected components and the strongly connected components containing x
- The two following equalities hold true

•
$$C'_{x} = \delta_{\Gamma}^{\hat{n-1}}(\{x\}) \cap \delta_{\Gamma^{-1}}^{\hat{n-1}}(\{x\})$$

•
$$C_x = \delta_{\Gamma_s}^{\hat{n}-1}(\{x\}) = \delta_{\Gamma_s}^{\hat{n}-1}(\{x\})$$

- where n = |E| and Γ_s is the symmetric closure of Γ
- ► To compute the connected and strongly connected components containing x, it is thus sufficient to compute the transitive closure of {x} for the graphs (E, Γ), (E, Γ⁻¹) and (E, Γ_s)

Complexity

- ▶ By using the algorithm DIL studied during practical session # 1
- The complexity of TRANS_NAIV is
 - $O(n^2 + nm)$ (where n = |E| and $m = |\overline{\Gamma}|$)

- If X and Y are represented by LLs and if Z is represented by a BA
- The time-complexity of TRANS is linear
 - O(n+m) (where n = |E| and $m = |\overline{\Gamma}|$)

Algorithm TRANS can be further simplified without changing its complexity:

Algorithm TRANS (Data: (E, Γ) , $x \in E$;

 $\mathsf{Result}: \ Z = \delta_{\Gamma}^{\hat{n}-1}(\{x\}))$

•
$$X := \{x\}$$
; $Z := \{x\}$;

• While $\exists y \in X$ do

•
$$X := X \setminus \{y\};$$

- For each $z \in \Gamma(y)$ do
 - If $z \notin Z$ then $X := X \cup \{z\}$; $Z := Z \cup \{z\}$;

Algorithm SCC (Data: (E, Γ) , $x \in E$;

•
$$X := \text{TRANS}((E, \Gamma), x);$$

- $\blacktriangleright \Gamma^{-1} := \mathsf{SYM}_1(E, \Gamma);$
- $Y := \text{TRANS}((E, \Gamma^{-1}), x)$
- $Z := X \cap Y$;

Result: $Z = C'_{\star}$)

Algorithm SCC (Data: (E, Γ) , $x \in E$;

•
$$X := \text{TRANS}((E, \Gamma), x);$$

- $\blacktriangleright \Gamma^{-1} := \mathsf{SYM}_1(E, \Gamma);$
- $Y := \text{TRANS}((E, \Gamma^{-1}), x)$
- $Z := X \cap Y$;

Using

- the linear-time algorithm SYM_1 (first lecture)
- the linear-time TRANS
- The time-complexity of SCC is linear:
 - O(n+m) (where n = |E| and $m = |\overline{\Gamma}|$)

Result: $Z = C'_{x}$

Result:
$$Y = C_x$$
)

- $\blacktriangleright \Gamma^{-1} := \mathsf{SYM}_1(E, \Gamma);$
- $\blacktriangleright \ \Gamma_s := \Gamma \cup \Gamma^{-1} ;$
- $Y := \text{TRANS}((E, \Gamma_s), x)$

Algorithm CC (Data: (E, Γ) , $x \in E$;

$$\bullet \ \Gamma^{-1} := \mathsf{SYM}_1(E, \Gamma);$$

$$\blacktriangleright \ \Gamma_s := \Gamma \cup \Gamma^{-1}$$

•
$$Y := \text{TRANS}((E, \Gamma_s), x)$$

Using

- the linear-time algorithm SYM_1 (first lecture)
- the linear-time TRANS
- The time-complexity of CC is linear:

•
$$O(n+m)$$
 (where $n = |E|$ and $m = |\overline{\Gamma}|$)

Result: $Y = C_x$)

Graph-based image processing

— Degrees —

(Professor version)

(Connectivity in graphs)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Problem

- In a charity diner, is there always two people having the same number of friends who are present in the diner?
- Can we draw in the plan five distinct lines such that any of them has exactly three intersection points with the others?

Problem

- In a charity diner, is there always two people having the same number of friends who are present in the diner?
- Can we draw in the plan five distinct lines such that any of them has exactly three intersection points with the others?
- In order to answer these questions read first the two next slides!

- Let $G = (E, \Gamma)$ be a graph and let $x \in E$
- ► The outer degree of x (for G) is the value $d^+(x) = |\Gamma(x)|$
- ► The inner degree of x(for G) is the value $d^{-}(x) = |\Gamma^{-1}(x)|$
- The degree of x(for G) is the value $d(x) = d^+(x) + d^-(x)$
- Let $G' = (E, \overline{\Gamma})$ be an undirected graph
- ► The degree of x for G' is the number d(x) of edges that are adjacent to x

- Prove that the two following propositions hold true
 - The sum of the degrees of the vertices of a graph is even
 - In any graph, there is an even number of vertices whose degree is odd

Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me the slides used in the Morpho, Graph and Image course. Some slides of the Graph-based Image Processing course at PPGINF/PUC Minas under supervision of Prof. Silvio Guimarães will be adapted versions of that course.

- Course MorphoGraph and Imagery https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/
- Jean Cousty
 - ESIEE Paris, Département Informatique
 - Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
 - E-mail: j.cousty@esiee.fr