Find out the difference(s)?

Shape 1 Shape 2

Silvio Guimar3es — Professor version Graph 1 de 31



Find out the difference(s)?

Graph G Graph G,

Silvio Guimardes — Professor version Graph 1 de 31



IV

INFORMATICA PUC Minas SCIENCE

Graph-based image processing

— Connectivity in graphs —
(Professor version)
(Connectivity in graphs)
Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas



Outline of the lecture

Path
Connectivity
Algorithms

Degrees

Silvio Guimardes — Professor version Graph 3 de 31



IV

INFORMATICA PUC Minas SCIENCE

Graph-based image processing

— Path —
(Professor version)
(Connectivity in graphs)
Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas



» Let G = (E,T) be a graph, and let x and y be two vertices in E

> A BEHREIUP R B AUEE] s 2 scquence T = (X, ..., x¢) of

vertices in E such that
» Vie {1, c.. ,g}, 06 E F(x,-_l)
>» xo=xandx, =y
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Definition

» Let G = (E,T) be a graph, and let x and y be two vertices in E

> A BEHREIUP R B AUEE] s 2 scquence T = (X, ..., x¢) of

vertices in E such that
» Vi€ {1, 500 ,E}, X; € I'(x,-,l)
» xo=xandx; =y

1 2
3
m=(1,2,3) is a path
4
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Definition

» Let G = (E,T) be a graph, and let x and y be two vertices in E

> A BEHREIUP R B AUEE] s 2 scquence T = (X, ..., x¢) of

vertices in E such that
» Vi€ {1, 500 ,E}, X; € I'(x,-,l)
» xo=xandx; =y

> Ifm=(x0,...,X¢) is a path, { is called its

1 2
3
m=(1,2,3) is a path of length 2
4
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Some remarkable paths

» A path of length 0 is called a

Example
,

» (3) is a trivial path

Silvio Guimar3es — Professor version Graph 6 de 31



Some remarkable paths

» A path of length 0 is called a

» A non-trivial path 7 = (xo, ..., x¢) is called a if xo=x¢

Example
,

» (3) is a trivial path
» (1,2,3,1) is a circuit
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Some remarkable paths

» A path of length 0 is called a REGVEINSEAY
» A non-trivial path 7 = (xo, ..., x¢) is called a if xo=x¢

» A path m = (xo, ..., x¢) is called if any two of its
vertices are distinct (except possibly xo and xp): Vi,j € {0,...,¢},
i#j = x #x (where {i,j} # {0,0})

Example
,

» (3) is a trivial path
» (1,2,3,1) is a circuit that is
3 elementary
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Some remarkable paths

» A path of length 0 is called a REGVEINSEAY
» A non-trivial path 7 = (xo, ..., x¢) is called a if xo=x¢

» A path m = (xo, ..., x¢) is called if any two of its
vertices are distinct (except possibly xo and xp): Vi,j € {0,...,¢},
i#j = x #x (where {i,j} # {0,0})

Example
,

» (3) is a trivial path
» (1,2,3,1) is a circuit that is
3 elementary
» (1,3,1,2,3,1) is a circuit
that is not elementary
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Basic properties

» Any path m from x to y contains an elementary path from x to y
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Basic properties

» Any path m from x to y contains an elementary path from x to y
» The length of an elementary circuit is less than n (where n = |E|)
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Basic properties

» Any path m from x to y contains an elementary path from x to y
» The length of an elementary circuit is less than n (where n = |E|)

» The length of an elementary path which is not a circuit is less
than n—1

Silvio Guimardes — Professor version

Graph 7 de 31



Undirected paths and cycles

» Let Gs = (E,Ts) be the symmetric closure of G
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Undirected paths and cycles

» Let Gs = (E,Ts) be the symmetric closure of G

> Any path in Gs is called an QilelliiZerNE1  NNE)|
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Undirected paths and cycles

» Let Gs = (E,Ts) be the symmetric closure of G

> Any path in Gs is called an QilelliiZerNE1  NNE)|

> A KaZdCNULEE] is 2 circuit in G, that does not pass twice by the

same edge

8 de 31
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Undirected paths and cycles

» Let Gs = (E,Ts) be the symmetric closure of G

» Any path in Gs is called an ilelliiZas=NEIL NNE)|

> A KaZeCRUEE] s 2 circuit in Gs that does not pass twice by the

same edge

If 7 = (xo,...,x¢) is an undirected path,

then 7’ = (xg, ..., xp) is an undirected path (since (E, ) is a
symmetric graph, which implies that x; € I's(xi—1) < xi—1 € ['s(x;))

8 de 31
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lllustration: path and undirected path, circuit and cycles

Example

> (1,2,1) is not a path » (1,2,3) is a path

» (1,2,3,1,2,4) is a path » (4,2,1) is not a path
» (4,2,1) is an undirected path » (1,2,3,1) is a circuit
» (1,3,2,1) is not a circuit » (1,3,2,1) is a cycle
» (1,3,1) is not a cycle
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Connected component

> Let x € E. The Qeellilet=lcReelulolell iR RERe LI =l Il /s the
subset C, of E defined by:
» C. = {y € E | there exists an undirected path from x to y}
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> Let x € E. The feelilatzleReeleglelil iR MR IAE -l /s the
subset C, of E defined by:
» C. = {y € E | there exists an undirected path from x to y}

Example
8

.5 ! > Cl:{1727374}:C2:
G=0G
’ > G = {5}

> Ci=G = C8:{6,7,8}

4
6
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Connected component as equivalence classes

1. Vx € E, x € C NGO

2. Vx,y e E,ye (, = xeCy
3. Vx,y,z€ E,[ye Ccandz € C)| = zECX

1. Vx € E, (x) is a (trivial) undirected path, thus x € C,

2. y € G = d an undirected path m = (xp,...,,x¢) from x to y
= 7’ = (x¢,...,x0) is an undirected path from y to x
= xe(,

3. [y € Ccand z € C,] = [3 an undirected path ™ = (xp, ..., x¢)
from x to y and 3 an undirected path 7’ = (yo, ..., ym) from y
toz] = 7’ =(x0,.--,%X0¥1,---,¥m) is an undirected path
fromxtoz = ze C, ]
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Strongly connected component

> Let x € E. The [BiglRelililCar=le Reelulolellld (of G )
containing x is the subset C| of E defined by
» C.={y € E |3 apath from x to y and 3 a path from y to x}
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s
> Let x € E. The Qg AeellilZe sl Meclulelelylld (of G )

containing x is the subset C| of E defined by
» C.={y € E |3 apath from x to y and 3 a path from y to x}

Example
8
2

. 7 e (={1,2,3} =C,=(j
) > G =14} ; G ={5)
i > G ={6} C={7}
> G ={8}

4
6
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Strongly connected components as equivalence classes?

Exercise. Are the strongly connected components of a graphs
equivalence classes? Proof or counter-example?
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Connected and strongly connected components computation

» We will first study a characterization of connected components and
of strongly connected components based on [yglelgelalelfeeifer W6 [ EYately

» This will allow us to propose efficient algorithm to compute them

The Flelgeltellel:stEIRCHEN NN 0 (X) of a subset X of E is th union of the
sets of successors of all vertices in X
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Iterated operators

» Let « be an operator and / € N

» We denote by ' the defined by

Ly =yt
2. 4% =1d (ie. VX C E,7°(X) = X)
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Iterated operators

» Let v be an operator and i € N

» We denote by 4/ the defined by

Loy=m"
2. 4% =1d (ie. ¥X C E,7°(X) = X)

Example (iterated dilation)

1. 6%(X) =

2. 0p(X) = 5r(5°( )) = or(X)

3. 0f(X) = or (6¢(X)) = or (or (X))

4. 63(X) = or(6%(X)) = or(r(or(X)))

5. .

6. 6’r(X)—6r(6’ HX)) =ér(---or(X)-.)
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Illustration: iterated dilation

Example

> X =0(X) = {1}
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Illustration: iterated dilation

Example

> X =0(X) = {1}
> 5HX) = {2)
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Illustration: iterated dilation

Example
> X = 52(X) = {1}
> H(X) = {2)
» (X) = {3.4)
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Iterated dilation and paths of given length

» letx€e E andieN
» The two following equalities
» 6L({x}) = {y € E | 3 a path from x to y of length i}
» 6i_.({x}) ={y € E| 3 a path from y to x of length i}
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Iterated dilation and paths of given length

» letx€e E andieN
» The two following equalities
» 6L({x}) = {y € E | 3 a path from x to y of length i}
» 6i_.({x}) ={y € E| 3 a path from y to x of length i}

» We define for any X C E and any p € N
- SP0X) = U0 (X) | i € {0...... p}}
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Iterated dilation and paths of given length

» Letxe E andieN
» The two following equalities
» 6L({x}) = {y € E | 3 a path from x to y of length i}
» 6i_.({x}) ={y € E| 3 a path from y to x of length i}

» We define for any X C E and any p € N
- SP0X) = U0 (X) | i € {0...... p}}

» The set 5A’r’(X) EREN S RATN pre-closure of X of rank p
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Transitive closure and paths

» letxe€ E

» The two following equalities
» 6°({x}) = {y € E | 3 a path from x to y of length < p}
> 6.’_’A_1({x}) = {y € E | 3 a path from y to x of length < p}
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Transitive closure and paths

» letx € E

> The two following equalities
» 6°({x}) = {y € E | 3 a path from x to y of length < p}
> 6.’_’A_1({X}) = {y € E | 3 a path from y to x of length < p}

> Let x € E, the [GEUHIVI R CEICRIRPGN is the set

> 5§°({X}) = {y € E | 3 a path from x to y}
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Transitive closure and paths

» letx € E

> The two following equalities
» 6°({x}) = {y € E | 3 a path from x to y of length < p}
> 6.’_’A_1({X}) = {y € E | 3 a path from y to x of length < p}

> Let x € E, the [GEUHIVI R CEICRIRPGN is the set

> 5§°({X}) = {y € E | 3 a path from x to y}

Exercise. Prove that 5?0({x}) = 6F:1({x}) (where n = |E|)
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lllustration: transitive closure

Example

>

PX:(S

=)

> X = 0%(X) = {1} (X) ={1}
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lllustration: transitive closure

Example

> X = 8(X) = {1}
> 54X = (2) > (X = (1.2}
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lllustration: transitive closure

Example
- X = 80(X) = {1} > X=ifpg =0
> GL(X) = {2} > op(X) = {1,2}
> 63(X) = {3.4} > 62(X) = {1,2,3,4} = 6/(X)
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Transitive closure and connected components

» Let x € E. Let C, and C, be respectively the

[l lil-Tern=te Weleluolelglagled and the Baagel4\d connected components

containing x
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Transitive closure and connected components

» Let x € E. Let C, and C, be respectively the

[l lil-Tern=te Weleluolelglagled and the Baagel4\d connected components

containing x
> The two following equalities
> =MD NE=H )
> Co= 0t M ({xh) = 0L M ({x)
» where n = |E| and s is the symmetric closure of T
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» Let x € E. Let C, and C, be respectively the

(elellyllorn=le Werolplolol Il and the Bigeld connected components

containing x
> The two following equalities
> =MD NE=H )
> Co= 0t M ({xh) = 0L M ({x)
» where n = |E| and s is the symmetric closure of T

» To compute the connected and strongly connected components
containing x, it is thus [l aiMreRe Ity the transitive closure

of {x} for the graphs (E,T), (E,[ 1) and (E,Ts)
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Algorithm TRANS NAIV ( Data: (E,l), x € E ;

Results: Z = 6" *({x}))

» X ={x};Y:=0;Z:={x};
» For each i from 1 to n—1 do

» Y := DIL((E,T), X); /*Y =dt({x}) */
» Z:=2UY; /* Z =6t({x}) */
» X =YY =0;

Silvio Guimar3es — Professor version Graph



Algorithm TRANS NAIV ( Data: (E,l), x € E ;
Results: Z = 67 *({x}))

» X ={x};Y:=0;Z:={x};
» For each i from 1 to n—1 do

» Y := DIL((E,T), X); /*Y =dt({x}) */
» Z:=2UY; /* Z =6t({x}) */
» X =YY =0;

Complexity

» By using the algorithm DIL studied during practical session # 1
» The complexity of TRANS NAIV is

> ROJGEEWN (where n = |E| and m = |T|)



Algorithm TRANS ( Data: (E,l), x € E ;

Result: Z =57 ({x}))

X ={x};Y:=0,;Z:={x};
For each i from 1 to n— 1 do
» While dy € X do

> X=X \{y};
» For each z € [(y) do

> Ifz¢ Zthen Y :=YU{z}; Z:=Z2U{z};
» X =Y:Y =0;:
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Algorithm TRANS ( Data: (E,l), x € E ;

Result: Z =57 ({x}))

X ={x};Y:=0,;Z:={x};
For each i from 1 to n— 1 do
» While dy € X do

> X=X \{y};
» For each z € [(y) do

> Ifz¢ Zthen Y :=YU{z}; Z:=Z2U{z};
» X =Y:Y =0;:

» If X and Y are represented by LLs and if Z is represented by a BA
» The time-complexity of TRANS is linear

> NGBS (where n = |E| and m = |T|)
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Algorithm TRANS can be further [IuIsliifel without changing its
complexity:

Algorithm TRANS ( Data: (E,T), x € E ;

Result : Z = 5}’:1({X}))

» X :={x}; Z:={x};
» While dy € X do

> X=X \{y}
» For each z € T(y) do

> Ifz¢ Zthen X =XU{z};Z:=2ZU{z};
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Computing the strongly connected component containing x

Algorithm SCC ( Data: (E,l), x € E ;

Result: Z = C))

v

X := TRANS((E,T), x);
~1:=SYM_1(E,T);

Y := TRANS((E,T 1), x)
Z=XNY;

v

v

v
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Computing the strongly connected component containing x

Algorithm SCC ( Data: (E,l), x € E ;

Result: Z = C))

» X := TRANS((E,T), x);
» I1:=SYM_1(E,T);

» Y := TRANS((E, 1), x)
» Z =XNY;

> Using
> the linear-time algorithm SYM 1 (first lecture)
> the linear-time TRANS

» The time-complexity of SCC is linear:
> NGB (where n = |E| and m = [T|)
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Computing the connected component containing x

Algorithm CC ( Data: (E,lN), x € E ;

Result: Y = ()

» I1:=SYM 1(E,I),
» [ =Tur—1t;
» Y := TRANS((E,T;), x)
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Computing the connected component containing x

Algorithm CC ( Data: (E,lN), x € E ;

Result: Y = ()

» I1:=SYM 1(E,I),
» [ =Tur—1t;
» Y := TRANS((E,T;), x)

> Using
> the linear-time algorithm SYM 1 (first lecture)
> the linear-time TRANS

» The time-complexity of CC is linear:
> NGB (where n = |E| and m = |T|)
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Application of graphs properties

» In a charity diner, is there always two people having the same
number of friends who are present in the diner?

» Can we draw in the plan five distinct lines such that any of them
has exactly three intersection points with the others?
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Application of graphs properties

» In a charity diner, is there always two people having the same
number of friends who are present in the diner?

» Can we draw in the plan five distinct lines such that any of them
has exactly three intersection points with the others?

» In order to answer these questions read first the two next slides!
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» Let G = (E,T) be a graph and let x € E

» The EIEELGRIPAGIMED] is the value dT(x) = |T(x)|
> The HINEKEACRIBIGIRE)] is the value d—(x) = [F1(x)|
> The RENCRIBIGIEE)] is the value d(x) = dt(x) + d~(x)

» Let G’ = (E,T) be an undirected graph

> The CELENIPEINEN is the number d(x) of edges that are

adjacent to x
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Degree: exercise

» Prove that the two following propositions hold true

» The sum of the degrees of the vertices of a graph is even
> In any graph, there is an even number of vertices whose degree is

odd
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