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Path

Definition

I Let G = (E , Γ) be a graph, and let x and y be two vertices in E

I A path from x to y (in G ) is a sequence π = (x0, . . . , x`) of
vertices in E such that

I ∀i ∈ {1, . . . , `}, xi ∈ Γ(xi−1)
I x0 = x and x` = y

I If π = (x0, . . . , x`) is a path, ` is called its length
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1

Example

π = (1, 2, 3) is a path

of length 2
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Some remarkable paths

I A path of length 0 is called a trivial path

I A non-trivial path π = (x0, . . . , x`) is called a circuit if x0 = x`

I A path π = (x0, . . . , x`) is called elementary if any two of its
vertices are distinct (except possibly x0 and x`): ∀i , j ∈ {0, . . . , `},
i 6= j =⇒ xi 6= xj (where {i , j} 6= {0, `})

2

3

4

1

Example

I (3) is a trivial path

I (1, 2, 3, 1) is a circuit

that is
elementary

I (1, 3, 1, 2, 3, 1) is a circuit
that is not elementary
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Basic properties

Property

I Any path π from x to y contains an elementary path from x to y

I The length of an elementary circuit is less than n (where n = |E |)
I The length of an elementary path which is not a circuit is less

than n − 1
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Undirected paths and cycles

Definition

I Let Gs = (E , Γs) be the symmetric closure of G

I Any path in Gs is called an undirected path (in G)

I A cycle (in G ) is a circuit in Gs that does not pass twice by the
same edge

Remark. If π = (x0, . . . , x`) is an undirected path,
then π′ = (x`, . . . , x0) is an undirected path (since (E , Γs) is a
symmetric graph, which implies that xi ∈ Γs(xi−1)⇔ xi−1 ∈ Γs(xi ))
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Illustration: path and undirected path, circuit and cycles

2

3

4

1

Example
I (1, 2, 1) is not a path
I (1, 2, 3, 1, 2, 4) is a path
I (4, 2, 1) is an undirected path
I (1, 3, 2, 1) is not a circuit
I (1, 3, 1) is not a cycle

I (1, 2, 3) is a path
I (4, 2, 1) is not a path
I (1, 2, 3, 1) is a circuit
I (1, 3, 2, 1) is a cycle
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Connected component

Definition

I Let x ∈ E . The connected component of G containing x is the
subset Cx of E defined by:

I Cx = {y ∈ E | there exists an undirected path from x to y}

Example
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5 I C1 = {1, 2, 3, 4} = C2 =
C3 = C4

I C5 = {5}
I C6 = C7 = C8 = {6, 7, 8}
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Connected component as equivalence classes

Property

1. ∀x ∈ E , x ∈ Cx reflexivity

2. ∀x , y ∈ E , y ∈ Cx =⇒ x ∈ Cy symmetry

3. ∀x , y , z ∈ E , [y ∈ Cx and z ∈ Cy ] =⇒ z ∈ Cx transitivity

Proof.
1. ∀x ∈ E , (x) is a (trivial) undirected path, thus x ∈ Cx

2. y ∈ Cx =⇒ ∃ an undirected path π = (x0, . . . , , x`) from x to y
=⇒ π′ = (x`, . . . , x0) is an undirected path from y to x

=⇒ x ∈ Cy

3. [y ∈ Cx and z ∈ Cy ] =⇒ [∃ an undirected path π = (x0, . . . , x`)
from x to y and ∃ an undirected path π′ = (y0, . . . , ym) from y
to z ] =⇒ π′′ = (x0, . . . , x`, y1, . . . , ym) is an undirected path
from x to z =⇒ z ∈ Cx
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Strongly connected component

Definition

I Let x ∈ E . The strongly connected component (of G )
containing x is the subset C ′x of E defined by

I C ′x = {y ∈ E | ∃ a path from x to y and ∃ a path from y to x}

Example
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5
I C ′1 = {1, 2, 3} = C ′2 = C ′3
I C ′4 = {4} ; C ′5 = {5}
I C ′6 = {6} ; C ′7 = {7}
I C ′8 = {8}
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Strongly connected components as equivalence classes?

Exercise. Are the strongly connected components of a graphs
equivalence classes? Proof or counter-example?

Silvio Guimarães – Professor version Graph 14 de 31



Graph-based image processing

— Algorithms —
(Professor version)

(Connectivity in graphs)

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022



Connected and strongly connected components computation

I We will first study a characterization of connected components and
of strongly connected components based on morphological dilation

I This will allow us to propose efficient algorithm to compute them

The morphological dilation δΓ(X ) of a subset X of E is th union of the
sets of successors of all vertices in X
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Iterated operators

I Let γ be an operator and i ∈ N
I We denote by γ i the operator defined by

1. γ i = γγ i−1

2. γ0 = Id (i.e. ∀X ⊆ E , γ0(X ) = X )

Example (iterated dilation)

1. δ0Γ(X ) = X

2. δ1Γ(X ) = δΓ(δ0Γ(X )) = δΓ(X )

3. δ2Γ(X ) = δΓ(δ1Γ(X )) = δΓ(δΓ(X ))

4. δ3Γ(X ) = δΓ(δ2Γ(X )) = δΓ(δΓ(δΓ(X )))

5. . . .
6. δiΓ(X ) = δΓ(δi−1

Γ (X )) = δΓ(. . . δΓ(X ) . . .)
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Illustration: iterated dilation
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Example

I X = δ0Γ(X ) = {1}

I δ1Γ(X ) = {2}
I δ2Γ(X ) = {3, 4}
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Iterated dilation and paths of given length

Property

I Let x ∈ E and i ∈ N
I The two following equalities hold true

I δiΓ({x}) = {y ∈ E | ∃ a path from x to y of length i}
I δiΓ−1({x}) = {y ∈ E | ∃ a path from y to x of length i}

I We define for any X ⊆ E and any p ∈ N
I δ̂pΓ(X ) = ∪{δiΓ(X ) | i ∈ {0, . . . , p}}

I The set δ̂pΓ(X ) is called the pre-closure of X of rank p
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Transitive closure and paths

Corolary

I Let x ∈ E
I The two following equalities hold true

I δ̂pΓ({x}) = {y ∈ E | ∃ a path from x to y of length ≤ p}
I ˆδpΓ−1({x}) = {y ∈ E | ∃ a path from y to x of length ≤ p}

I Let x ∈ E , the (transitive) closure of {x} is the set

I ˆδ∞Γ ({x}) = {y ∈ E | ∃ a path from x to y}

Exercise. Prove that ˆδ∞Γ ({x}) = ˆδn−1
Γ ({x}) (where n = |E |)
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Illustration: transitive closure
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Example

I X = δ0Γ(X ) = {1}

I δ1Γ(X ) = {2}
I δ2Γ(X ) = {3, 4}

I X = δ̂0Γ(X ) = {1}

I δ̂1Γ(X ) = {1, 2}
I δ̂2Γ(X ) = {1, 2, 3, 4} = δ̂7Γ(X )
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Transitive closure and connected components

Property

I Let x ∈ E . Let Cx and C ′x be respectively the
connected components and the strongly connected components
containing x

I The two following equalities hold true
I C ′x = ˆδn−1

Γ ({x}) ∩ ˆδn−1
Γ−1 ({x})

I Cx = ˆδn−1
Γs

({x}) = ˆδn−1
Γs

({x})
I where n = |E | and Γs is the symmetric closure of Γ

I To compute the connected and strongly connected components
containing x , it is thus sufficient to compute the transitive closure
of {x} for the graphs (E , Γ), (E , Γ−1) and (E , Γs)
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Naive algorithm for the transitive closure of {x}

Algorithm TRANS_NAIV ( Data: (E , Γ), x ∈ E ;

Results: Z = ˆδn−1Γ ({x}))

I X := {x} ; Y := ∅ ; Z := {x} ;
I For each i from 1 to n − 1 do

I Y := DIL((E , Γ), X ) ; /* Y = δiΓ({x}) */
I Z := Z ∪ Y ; /* Z = δ̂iΓ({x}) */
I X := Y ; Y := ∅ ;

Complexity

I By using the algorithm DIL studied during practical session # 1
I The complexity of TRANS_NAIV is

I O(n2 + nm) (where n = |E | and m = |Γ|)

Silvio Guimarães – Professor version Graph 23 de 31



Naive algorithm for the transitive closure of {x}

Algorithm TRANS_NAIV ( Data: (E , Γ), x ∈ E ;

Results: Z = ˆδn−1Γ ({x}))

I X := {x} ; Y := ∅ ; Z := {x} ;
I For each i from 1 to n − 1 do

I Y := DIL((E , Γ), X ) ; /* Y = δiΓ({x}) */
I Z := Z ∪ Y ; /* Z = δ̂iΓ({x}) */
I X := Y ; Y := ∅ ;

Complexity

I By using the algorithm DIL studied during practical session # 1
I The complexity of TRANS_NAIV is

I O(n2 + nm) (where n = |E | and m = |Γ|)

Silvio Guimarães – Professor version Graph 23 de 31



Linear-time algorithm for the transitive closure of {x}

Algorithm TRANS ( Data: (E , Γ), x ∈ E ;
Result: Z = ˆδn−1Γ ({x}))

X := {x} ; Y := ∅ ; Z := {x} ;
For each i from 1 to n − 1 do

I While ∃y ∈ X do
I X := X \ {y} ;
I For each z ∈ Γ(y) do

I If z /∈ Z then Y := Y ∪ {z} ; Z := Z ∪ {z} ;

I X := Y ; Y := ∅ ;

I If X and Y are represented by LLs and if Z is represented by a BA
I The time-complexity of TRANS is linear

I O(n + m) (where n = |E | and m = |Γ|)
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Linear-time algorithm for the transitive closure of {x}

Algorithm TRANS can be further simplified without changing its
complexity:

Algorithm TRANS ( Data: (E , Γ), x ∈ E ;
Result : Z = ˆδn−1Γ ({x}))

I X := {x} ; Z := {x};
I While ∃y ∈ X do

I X := X \ {y};
I For each z ∈ Γ(y) do

I If z /∈ Z then X := X ∪ {z} ; Z := Z ∪ {z} ;
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Computing the strongly connected component containing x

Algorithm SCC ( Data: (E , Γ), x ∈ E ;
Result: Z = C ′x)

I X := TRANS((E , Γ), x);
I Γ−1 := SYM_1(E , Γ);
I Y := TRANS((E , Γ−1), x)
I Z := X ∩ Y ;

I Using
I the linear-time algorithm SYM_1 (first lecture)
I the linear-time TRANS

I The time-complexity of SCC is linear:
I O(n + m) (where n = |E | and m = |Γ|)
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Computing the connected component containing x

Algorithm CC ( Data: (E , Γ), x ∈ E ;
Result: Y = Cx)

I Γ−1 := SYM_1(E , Γ);
I Γs := Γ ∪ Γ−1 ;
I Y := TRANS((E , Γs), x)

I Using
I the linear-time algorithm SYM_1 (first lecture)
I the linear-time TRANS

I The time-complexity of CC is linear:
I O(n + m) (where n = |E | and m = |Γ|)
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Application of graphs properties

Problem

I In a charity diner, is there always two people having the same
number of friends who are present in the diner?

I Can we draw in the plan five distinct lines such that any of them
has exactly three intersection points with the others?

I In order to answer these questions read first the two next slides!
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Degree

I Let G = (E , Γ) be a graph and let x ∈ E

I The outer degree of x (for G ) is the value d+(x) = |Γ(x)|

I The inner degree of x(for G ) is the value d−(x) = |Γ−1(x)|

I The degree of x(for G ) is the value d(x) = d+(x) + d−(x)

I Let G ′ = (E , Γ) be an undirected graph

I The degree of x for G ′ is the number d(x) of edges that are
adjacent to x
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Degree: exercise

I Prove that the two following propositions hold true
I The sum of the degrees of the vertices of a graph is even
I In any graph, there is an even number of vertices whose degree is

odd
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