1 Shortest Path Problem

2 Algorithms for Single Source Shortest Path Dijkstra Algorithm Bellman-Ford

Graph-based image processing — Shortest Path Problem —

(Professor version)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Shortest Path Problem

- G = (V, E) is a connected directed graph. Each edge e has a length l_e ≥ 0.
- V has \overline{n} nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to each node in V.
- ► Aside: If *G* is undirected, convert to a directed graph by replacing each edge in *G* by two directed edges.

Shortest Path Problem

- G = (V, E) is a connected directed graph. Each edge e has a length l_e ≥ 0.
- V has \overline{n} nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to each node in V.
- ► Aside: If *G* is undirected, convert to a directed graph by replacing each edge in *G* by two directed edges.

SHORTEST PATHS

INSTANCE A directed graph G(V, E), a function $I : E \to \mathbb{R}^+$, and a node $s \in V$

SOLUTION A set $\{P_u, u \in V\}$, where P_u is the shortest path in G from s to u.

Network

Definition

- A network is a triple $N = (E, \Gamma, \ell)$ such that
 - (E, Γ) is a graph without loop; and
 - ℓ is a map from $\overrightarrow{\Gamma}$ in \mathbb{R}

If (E, Γ, ℓ) is a network and if u ∈ Γ is an arc, the real number ℓ(u) is called the length of u

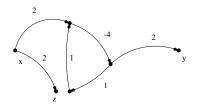
Network

Definition

• A network is a triple
$$N = (E, \Gamma, \ell)$$
 such that

- (E, Γ) is a graph without loop; and
- ℓ is a map from $\overrightarrow{\Gamma}$ in \mathbb{R}

If (E, Γ, ℓ) is a network and if u ∈ Γ is an arc, the real number ℓ(u) is called the length of u



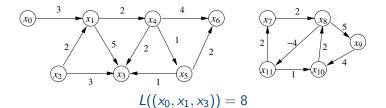
- ► Here, $N = (E, \Gamma, \ell)$ denotes a network, and *G* denotes the graph $G = (E, \Gamma)$
- If u = (x, y) is an arc of G, we write $\ell(x, y)$ instead of $\ell((x, y))$

Length of a path

- Let $\pi = (x_0, \ldots, x_n)$ be a path in G
- The length of π (in N) is the sum of the length of the arcs in π:
 L(π) = ∑{ℓ(x_i, x_{i+1}) | 0 ≤ i ≤ n − 1}

Length of a path

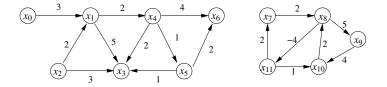
- Let $\pi = (x_0, \ldots, x_n)$ be a path in G
- The length of π (in N) is the sum of the length of the arcs in π:
 L(π) = ∑{ℓ(x_i, x_{i+1}) | 0 ≤ i ≤ n − 1}



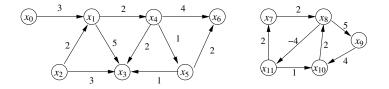
• Let x and y be two vertices of G

A shortest path from x to y (in N) is a path π from x to y such that the length of π is less than or equal to the length of any other path from x to y:

• $\forall \pi'$ path from x to y, $L(\pi) \leq L(\pi')$

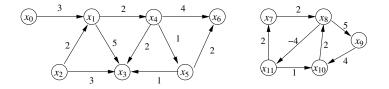


•
$$\pi = (x_0, x_1, x_3)$$



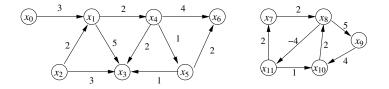
Example

• $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 (L(π) = 8)

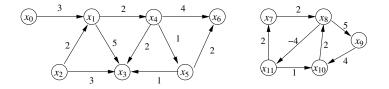


Example

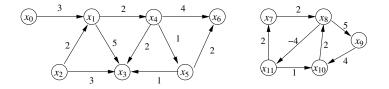
π = (x₀, x₁, x₃) is not a shortest path from x₀ to x₃ (L(π) = 8)
 π = (x₀, x₁, x₄, x₃) is a shortest path from x₀ to x₃ (L(π) = 7)



- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 (L(π) = 8)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
 - shortest path from x_2 to x_0 ?



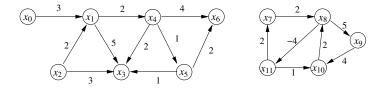
- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
- There is no shortest path from x_2 to x_0



Example

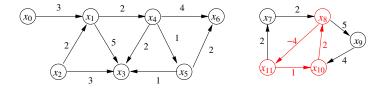
- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
- There is no shortest path from x_2 to x_0

shortest path from x_7 to x_9 ?

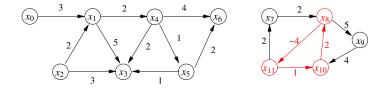


- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 (L(π) = 8)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
- There is no shortest path from x_2 to x_0
- There is no shortest path from x_7 to x_9

Negative circuit



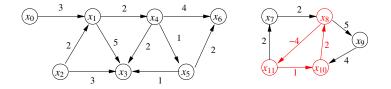
Negative circuit



Definition

► A negative circuit in N is a circuit of negative length

Negative circuit



Definition A negative circuit in N is a circuit of negative length

<u>*Remark.*</u> If a strongly connected component has a negative circuit, then there is no shortest path between any two arbitrary vertices of this component

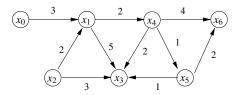
Property

- There exists a shortest path from x to any other vertex in E if and only if
 - $\forall y \in E, \exists a \text{ path from } x \text{ to } y$
 - there is no negative circuit in N

- There exist algorithms for
 - 1. Finding shortest paths if they exist and
 - 2. Detecting if a graph has a negative circuit
- ► For instance, Bellman algorithm

Positive lengths network

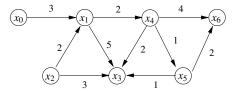
► A positive length network is a network (E, Γ, ℓ) such that: ► $\forall u \in \overrightarrow{\Gamma}, \ell(u) \ge 0$



Positive lengths network

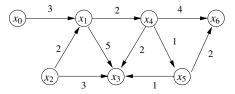
Property

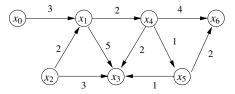
If (E, Γ, ℓ) is a positive lengths network, then ∀x, y ∈ E
 ∃ a path from x to y ⇔ ∃ a shortest path from x à y

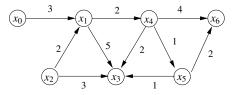


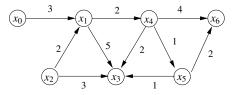
- ► Let $N = (E, \Gamma, \ell)$ be a positive lengths network, let $x \in E$
- We define the map $L_x : E \to \mathbb{R} \cup \{\infty\}$ by:

 $L_x(y) = \begin{cases} \text{ the length of a shortest path from } x \text{ to } y, \text{ if such path exists} \\ \infty \text{ , otherwise} \end{cases}$

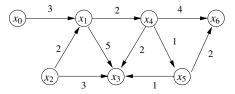




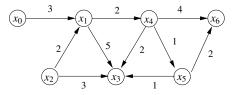


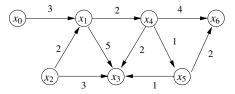


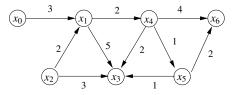
$$\frac{y = x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6}{L_{x_0}(y) = 0 \quad 3 \quad \infty}$$



$$\frac{y = x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6}{L_{x_0}(y) = 0 \quad 3 \quad \infty \quad 7}$$







Graph-based image processing

- Algorithms for Single Source Shortest Path - (Professor version)

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

Problems

1. Given a network (E, Γ, ℓ) and two vertices x and y in E

- Find a shortest path from x to y
- Find the length $L_x(y)$ of a shortest path from x to y
- 2. Given a network (E, Γ, ℓ) and a vertex x in E
 - Find for each vertex y in E the length $L_x(y)$ of a shortest path from x to y
- 3. Given a network (E, Γ, ℓ)
 - Find, for each pair x, y of vertices in E, the length of a shortest path from x to y
- 4. Having solved problem 2
 - ► Solve problem 1

Dijkstra algorithm

1. Given a network (E, Γ, ℓ) and two vertices x and y in E

- Find a shortest path from x to y
- Find the length $L_x(y)$ of a shortest path from x to y
- 2. Given a network (E, Γ, ℓ) and a vertex x in E
 - Find for each vertex y in E the length $L_x(y)$ of a shortest path from x to y
- 3. Given a network (E, Γ, ℓ)
 - Find, for each pair x, y of vertices in E, the length of a shortest path from x to y
- 4. Having solved problem 2
 - ► Solve problem 1

Algorithm DIJKSTRA (Data: (E, Γ, ℓ) , n = |E|, $x \in E$;

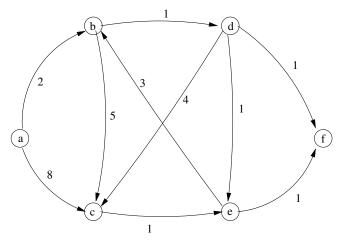
Result: L_x)

$$\overline{S} := \emptyset$$
;
For each $y \in E$ Do $L_x[y] = \infty$; $\overline{S} := \overline{S} \cup \{y\}$;
 $L_x[x] := 0$; $k := 0$; $\mu := 0$;
While $k < n$ and $\mu \neq \infty$ Do

- Extract a vertex $y^* \in \overline{S}$ such that $L_x[y^*] = \min\{L_x[y], y \in \overline{S}\}$
- $k + +; \mu := L_x[y^*];$
- ▶ For each $y \in \Gamma(y^*) \cap \overline{S}$ Do
 - $L_x[y] := \min\{L_x[y], L_x[y^*] + \ell(y^*, y)\};$

Computing the lengths of shortest paths

Exercise. Execute "by hand" Dijsktra algorithm on the following network with x = a, and on any positive length network of your choice



- Let $x \in E$ and $\mu \in \mathbb{R}$
- ► A subset S of E is called a µ-separating (for x) if the two following conditions hold true:

- Let $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ-separating (for x) if the two following conditions hold true:
 - 1. S contains any vertex y such that the length $L_x(y)$ of a shortest path from x to y is less than μ

- Let $x \in E$ and $\mu \in \mathbb{R}$
- ► A subset S of E is called a µ-separating (for x) if the two following conditions hold true:
 - 1. S contains any vertex y such that the length $L_x(y)$ of a shortest path from x to y is less than μ
 - 2. $\overline{S} = E \setminus S$ contains any vertex y such that the length of a shortest path from x to y is greater than μ

- ▶ Let $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- ► An S-path is a path whose intermediary vertices are all in S

- ▶ Let $x \in E$, let $\mu \in \mathbb{R}$, and let *S* be a set that is μ -separating for x
- ► An S-path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

- ▶ Let $x \in E$, let $\mu \in \mathbb{R}$, and let *S* be a set that is μ -separating for x
- ► An S-path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

• Let
$$y^* \in \overline{S}$$
 such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$

- ▶ Let $x \in E$, let $\mu \in \mathbb{R}$, and let *S* be a set that is μ -separating for x
- ► An S-path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

- Let $y^* \in \overline{S}$ such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$
- Then, $L_x^S(y^*) = L_x(y^*)$

- ▶ Let $x \in E$, let $\mu \in \mathbb{R}$, and let *S* be a set that is μ -separating for x
- ► An S-path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

- Let $y^* \in \overline{S}$ such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$
- Then, $L_x^S(y^*) = L_x(y^*)$
- Thus, $S \cup \{y^*\}$ is a set that is μ' -separating with $\mu' = L_x^S(y^*)$

Algorithm DIJKSTRA (Data: (E, Γ, ℓ) , n = |E|, $x \in E$;

Result: L_x)

$$\overline{S} := \emptyset$$
;
For each $y \in E$ Do $L_x[y] = \infty$; $\overline{S} := \overline{S} \cup \{y\}$;
 $L_x[x] := 0$; $k := 0$; $\mu := 0$;
While $k < n$ and $\mu \neq \infty$ Do

- Extract a vertex $y^* \in \overline{S}$ such that $L_x[y^*] = \min\{L_x[y], y \in \overline{S}\}$
- ► $k + +; \mu := L_x[y^*];$
- ▶ For each $y \in \Gamma(y^*) \cap \overline{S}$ Do
 - $L_x[y] := \min\{L_x[y], L_x[y^*] + \ell(y^*, y)\};$

► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

- ► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.
- Greedily add a node v to S that is closest to s.

- ► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.
- Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- **3** Initially d[s] = 0 and S = s;

```
4 while S \neq V do

5 Select a node v \notin S with at least one edge from S for which

d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e) is as small as possible;

6 Add v to S and define d[v] = d'[v];

7 end
```

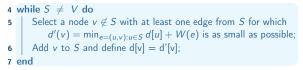
► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

• Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;



► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

• Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

```
4 while S \neq V do

5 Select a node v \notin S with at least one edge from S for which

d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e) is as small as possible;

6 Add v to S and define dial = d'half
```

6 Add v to S and define d[v] = d'[v];

```
7 end
```

► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

• Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

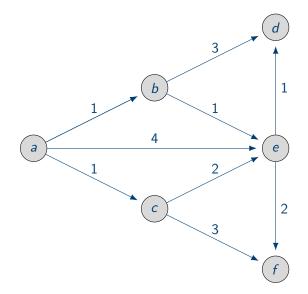
```
4 while S \neq V do

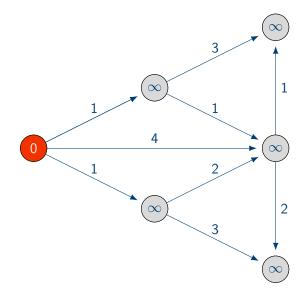
5 Select a node v \notin S with at least one edge from S for which

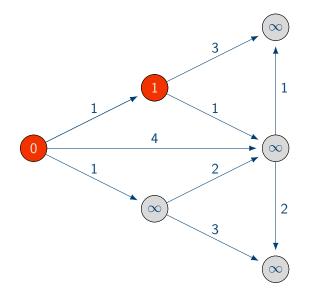
d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e) is as small as possible;

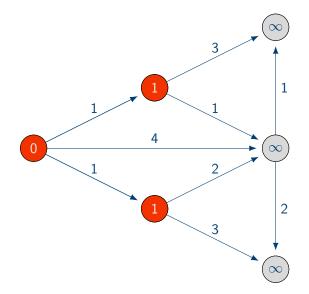
6 Add v to S and define d[v] = d'[v];
```

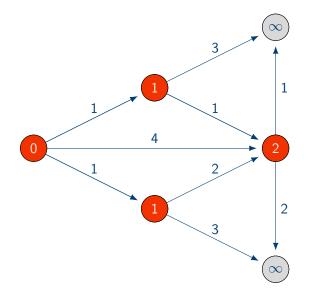
- 7 end
- Can modify algorithm to compute the shortest paths themselves: record the predecessor u that minimises d'(v).

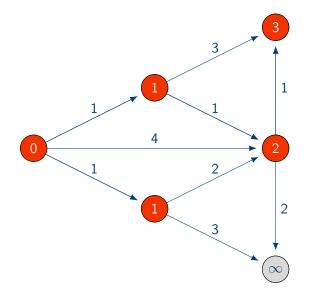


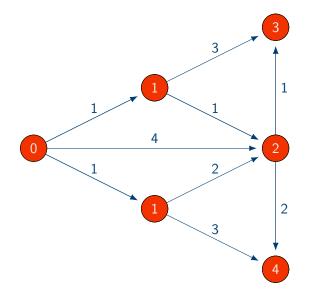










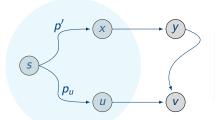


Proof of Correctness

- Let P_u be the shortest path computed for a node u.
- Claim: P_u is the shortest path from s to u.
- ▶ Prove by induction on the size of *S*.
 - Base case: |S| = 1. The only node in S is s.
 - Inductive step: we add the node v to S. Let u be the v's predecessor on the path P_v. Could there be a shorter path P from s to v?

Proof of Correctness

- Let P_u be the shortest path computed for a node u.
- Claim: P_u is the shortest path from s to u.
- ▶ Prove by induction on the size of *S*.
 - Base case: |S| = 1. The only node in S is s.
 - Inductive step: we add the node v to S. Let u be the v's predecessor on the path P_v. Could there be a shorter path P from s to v?



The alternate s - v path Pthrough x and y already too long by the time it had left the set S

Comments about Dijkstra's Algorithm

- ► Algorithm cannot handle negative edge lengths.
- Union of shortest paths output form a tree. Why?

Algorithm: Shortes path algorithm - Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end


```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

► How many iterations are there of the while loop? .

Algorithm: Shortes path algorithm - Dijkstra) input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s 1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible;

6 Add v to S and define
$$d[v] = d'[v]$$
;

7 end

• How many iterations are there of the while loop? n-1.

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end
 - How many iterations are there of the while loop? n-1.
 - In each iteration, for each node v ∉ S, compute min_{e=(u,v),u∈S} d(u) + l_e.

Algorithm: Shortes path algorithm - Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 $| Select a node v \notin S$ with at least one edge from S for
 - Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible;

6 | Add v to S and define
$$d[v] = d'[v];$$

```
7 end
```

• Observation: If we add v to S, d'(w) changes only for v's neighbours.

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

- Observation: If we add v to S, d'(w) changes only for v's neighbours.
- Store the minima d'(v) for each node $v \in V S$ in a priority queue.
- Determine the next node v to add to S using ExtractMin.
- After adding v, for each neighbour w of v, compute $d(v) + l_{(v,w)}$.
- ► If $d(v) + l_{(v,w)} < d'(w)$, update w's key using ChangeKey.

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

- Observation: If we add v to S, d'(w) changes only for v's neighbours.
- Store the minima d'(v) for each node $v \in V S$ in a priority queue.
- Determine the next node v to add to S using ExtractMin.
- After adding v, for each neighbour w of v, compute $d(v) + l_{(v,w)}$.
- ▶ If $d(v) + l_{(v,w)} < d'(w)$, update w's key using ChangeKey.
- How many times are ExtractMin and ChangeKey invoked?

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

- Observation: If we add v to S, d'(w) changes only for v's neighbours.
- Store the minima d'(v) for each node $v \in V S$ in a priority queue.
- Determine the next node v to add to S using ExtractMin.
- After adding v, for each neighbour w of v, compute $d(v) + l_{(v,w)}$.
- ▶ If $d(v) + l_{(v,w)} < d'(w)$, update w's key using ChangeKey.
- ► How many times are ExtractMin and ChangeKey invoked? n 1 and m times, respectively.

Single Source Shortest Path Problem

- ▶ G = (V, E) is a connected directed graph. Each edge e has a length l_e. Note that the weights may be negative.
- ► V has n nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to all other nodes in V.
- ► Aside: If G is undirected, convert to a directed graph by replacing each edge in G by two directed edges.

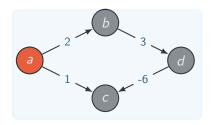
Single Source Shortest Path Problem

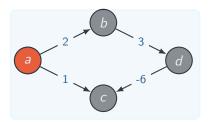
- ▶ G = (V, E) is a connected directed graph. Each edge e has a length l_e. Note that the weights may be negative.
- ► V has n nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to all other nodes in V.
- ► Aside: If G is undirected, convert to a directed graph by replacing each edge in G by two directed edges.

SHORTEST PATHS

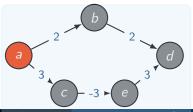
INSTANCE A directed graph G(V, E), a function $I : E \to \mathbb{R}$, and a node $s \in V$

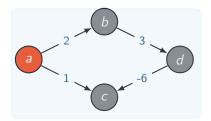
SOLUTION A set $\{P_u, u \in V\}$, where P_u is the shortest path in *G* from *s* to *u*.



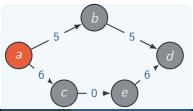


Re-weighting – Adding a constant to every edge weight can fail

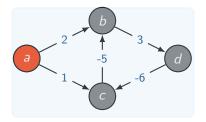




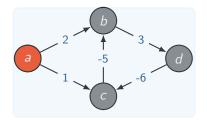
Re-weighting – Adding a constant to every edge weight can fail



If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.



If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.



The Bellman-Ford algorithm is a way to find single source shortest paths in a graph with negative edge weights (but no negative cycles).

OPT(i, v) = length of shortest v-t path P using at most i edges.

OPT(i, v) = length of shortest v-t path P using at most i edges.

• Case 1 : P uses at most i - 1 edges.

OPT(i, v) = OPT(i - 1, v)

OPT(i, v) = length of shortest v-t path P using at most i edges.

• Case 1 : P uses at most i - 1 edges.

$$OPT(i, v) = OPT(i - 1, v)$$

- Case 2 : P uses exactly i edges
 - ▶ if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i - 1 edges

OPT(i, v) = length of shortest v-t path P using at most i edges.

• Case 1 : P uses at most i - 1 edges.

$$OPT(i, v) = OPT(i - 1, v)$$

- Case 2 : P uses exactly i edges
 - ▶ if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i 1 edges

$$OPT(i, v) = \begin{cases} 0, & \text{if } i = 0\\ \min \begin{cases} OPT(i-1, v) \\ \min\{OPT(i-1, w) + c_{vw}\} \end{cases}, & \text{otherwise} \end{cases}$$

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
 4
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i-1, w] + c_{vw}\}
 8
       end
 9
10 end
```

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i-1, w] + c_{vw}\}
 8
 9
       end
10 end
```

Computational cost: O(mn)

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i-1, w] + c_{vw}\}
 8
 9
       end
10 end
```

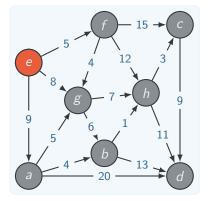
- Computational cost: O(mn)
- For finding the shortest paths, it is necessary to maintain a successor for each table entry.

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i - 1, w] + c_{vw}\}
 8
 9
       end
10 end
```

- Computational cost: O(mn)
- For finding the shortest paths, it is necessary to maintain a successor for each table entry.

How to detect negative cycles?

Shortest path – an example



Compute the shortest path from *e* to all other nodes!

Complexity

- ► Initialization: O(n)
- ► While loop (line 4): O(n)
- ► Extract (line 5): O(n²)
- For each loop (line 7): O(n+m)
- ► DIJKSTRA: O(n)

Complexity

- ► Initialization: O(n)
- ▶ While loop (line 4): O(n)
- ► Extract (line 5): O(n²)
- For each loop (line 7): O(n+m)
- ▶ DIJKSTRA: O(n)
- can be easily reduced to $O(n \log(n) + m)$

Propose an algorithm whose data are:

- a positive lengths network N
- ► a pair (x, y) of vertices
- and whose result is:
 - a shortest path from x to y if such path exists

<u>*Help.*</u> Start by computing the lengths $L_x(z)$ for all vertices $z \in E$ using Dijkstra algorithm.

Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me the slides used in the Morpho, Graph and Image course. Some slides of the Graph-based Image Processing course at PPGINF/PUC Minas under supervision of Prof. Silvio Guimarães will be adapted versions of that course.

- Course MorphoGraph and Imagery https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/
- Jean Cousty
 - ESIEE Paris, Département Informatique
 - Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
 - E-mail: j.cousty@esiee.fr