
Outline

1 Shortest Path Problem

2 Algorithms for Single Source Shortest Path
Dijkstra Algorithm
Bellman-Ford

Silvio Guimarães – Professor version Graph 1 de 35

Graph-based image processing

— Shortest Path Problem —
(Professor version)

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le ≥ 0 .

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

each node in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R+, and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães – Professor version Graph 3 de 35

Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le ≥ 0 .

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

each node in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R+, and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães – Professor version Graph 3 de 35

Network

Definition

I A network is a triple N = (E , Γ, `) such that
I (E , Γ) is a graph without loop; and
I ` is a map from

−→
Γ in R

I If (E , Γ, `) is a network and if u ∈
−→
Γ is an arc, the real

number `(u) is called the length of u

2��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

x y

2

-4

1

1

2

z

Silvio Guimarães – Professor version Graph 4 de 35

Network

Definition

I A network is a triple N = (E , Γ, `) such that
I (E , Γ) is a graph without loop; and
I ` is a map from

−→
Γ in R

I If (E , Γ, `) is a network and if u ∈
−→
Γ is an arc, the real

number `(u) is called the length of u

2��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

x y

2

-4

1

1

2

z

Silvio Guimarães – Professor version Graph 4 de 35

Notations

I Here, N = (E , Γ, `) denotes a network, and G denotes the graph
G = (E , Γ)

I If u = (x , y) is an arc of G , we write `(x , y) instead of `((x , y))

Silvio Guimarães – Professor version Graph 5 de 35

Length of a path

I Let π = (x0, . . . , xn) be a path in G

I The length of π (in N) is the sum of the length of the arcs in π:
I L(π) =

∑
{`(xi , xi+1) | 0 ≤ i ≤ n − 1}

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

L((x0, x1, x3)) = 8

Silvio Guimarães – Professor version Graph 6 de 35

Length of a path

I Let π = (x0, . . . , xn) be a path in G

I The length of π (in N) is the sum of the length of the arcs in π:
I L(π) =

∑
{`(xi , xi+1) | 0 ≤ i ≤ n − 1}

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

L((x0, x1, x3)) = 8

Silvio Guimarães – Professor version Graph 6 de 35

Shortest path

I Let x and y be two vertices of G
I A shortest path from x to y (in N) is a path π from x to y such

that the length of π is less than or equal to the length of
any other path from x to y :

I ∀π′ path from x to y , L(π) ≤ L(π′)

Silvio Guimarães – Professor version Graph 7 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3)

is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I

There is no

shortest path from x2 to x0

?

I

There is no

shortest path from x7 to x9

?

Silvio Guimarães – Professor version Graph 8 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3) is not a shortest path from x0 to x3 (L(π) = 8)

I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I

There is no

shortest path from x2 to x0

?

I

There is no

shortest path from x7 to x9

?

Silvio Guimarães – Professor version Graph 8 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3) is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I

There is no

shortest path from x2 to x0

?

I

There is no

shortest path from x7 to x9

?

Silvio Guimarães – Professor version Graph 8 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3) is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I

There is no

shortest path from x2 to x0 ?

I

There is no

shortest path from x7 to x9

?

Silvio Guimarães – Professor version Graph 8 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3) is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I There is no shortest path from x2 to x0

?

I

There is no

shortest path from x7 to x9

?

Silvio Guimarães – Professor version Graph 8 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3) is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I There is no shortest path from x2 to x0

?

I

There is no

shortest path from x7 to x9 ?

Silvio Guimarães – Professor version Graph 8 de 35

Shortest path: illustration

3

2

3

5
2

1

2

1

42

5

2

2

1

2

4

−4

x0 x1 x4 x6

x2 x3 x5

x7 x8

x9

x11 x10

Example

I π = (x0, x1, x3) is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I There is no shortest path from x2 to x0

?

I There is no shortest path from x7 to x9

?

Silvio Guimarães – Professor version Graph 8 de 35

Negative circuit

3

2

3

5
2

1

2

1

42

5

2

2

4

2

1

−4

x0 x1 x4 x6

x2 x3 x5

x7

x9

x8

x11 x10

Definition

I A negative circuit in N is a circuit of negative length

Remark. If a strongly connected component has a negative circuit, then
there is no shortest path between any two arbitrary vertices of this
component

Silvio Guimarães – Professor version Graph 9 de 35

Negative circuit

3

2

3

5
2

1

2

1

42

5

2

2

4

2

1

−4

x0 x1 x4 x6

x2 x3 x5

x7

x9

x8

x11 x10

Definition

I A negative circuit in N is a circuit of negative length

Remark. If a strongly connected component has a negative circuit, then
there is no shortest path between any two arbitrary vertices of this
component

Silvio Guimarães – Professor version Graph 9 de 35

Negative circuit

3

2

3

5
2

1

2

1

42

5

2

2

4

2

1

−4

x0 x1 x4 x6

x2 x3 x5

x7

x9

x8

x11 x10

Definition

I A negative circuit in N is a circuit of negative length

Remark. If a strongly connected component has a negative circuit, then
there is no shortest path between any two arbitrary vertices of this
component

Silvio Guimarães – Professor version Graph 9 de 35

Existence of a shortest path

Property

I There exists a shortest path from x to any other vertex in E if and
only if

I ∀y ∈ E , ∃ a path from x to y
I there is no negative circuit in N

Silvio Guimarães – Professor version Graph 10 de 35

Shortest path or negative circuit?

I There exist algorithms for
1. Finding shortest paths if they exist and

2. Detecting if a graph has a negative circuit

I For instance, Bellman algorithm

Silvio Guimarães – Professor version Graph 11 de 35

Positive lengths network

I A positive length network is a network (E , Γ, `) such that:

I ∀u ∈
−→
Γ , `(u) ≥ 0

Property

I If (E , Γ, `) is a positive lengths network, then ∀x , y ∈ E
I ∃ a path from x to y ⇔ ∃ a shortest path from x à y

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Silvio Guimarães – Professor version Graph 12 de 35

Positive lengths network

I A positive length network is a network (E , Γ, `) such that:

I ∀u ∈
−→
Γ , `(u) ≥ 0

Property

I If (E , Γ, `) is a positive lengths network, then ∀x , y ∈ E
I ∃ a path from x to y ⇔ ∃ a shortest path from x à y

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Silvio Guimarães – Professor version Graph 12 de 35

Shortest paths

I Let N = (E , Γ, `) be a positive lengths network, let x ∈ E

I We define the map Lx : E → R ∪ {∞} by:

Lx(y) =

{
the length of a shortest path from x to y , if such path exists
∞ , otherwise

Silvio Guimarães – Professor version Graph 13 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) =

0 3 ∞ 7 5 6 8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0

3 ∞ 7 5 6 8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0 3

∞ 7 5 6 8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0 3 ∞

7 5 6 8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0 3 ∞ 7

5 6 8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0 3 ∞ 7 5

6 8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0 3 ∞ 7 5 6

8

Silvio Guimarães – Professor version Graph 14 de 35

Illustration: the map Lx

3

2

3

5
2

1

2

1

42
x0 x1 x4 x6

x2 x3 x5

Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) = 0 3 ∞ 7 5 6 8

Silvio Guimarães – Professor version Graph 14 de 35

Graph-based image processing

— Algorithms for Single Source Shortest Path —
(Professor version)

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

Problems

1. Given a network (E , Γ, `) and two vertices x and y in E
I Find a shortest path from x to y
I Find the length Lx(y) of a shortest path from x to y

2. Given a network (E , Γ, `) and a vertex x in E

I Find for each vertex y in E the length Lx(y) of a shortest path
from x to y

3. Given a network (E , Γ, `)

I Find, for each pair x , y of vertices in E , the length of a shortest
path from x to y

4. Having solved problem 2
I Solve problem 1

Silvio Guimarães – Professor version Graph 16 de 35

Dijkstra algorithm

1. Given a network (E , Γ, `) and two vertices x and y in E
I Find a shortest path from x to y
I Find the length Lx(y) of a shortest path from x to y

2. Given a network (E , Γ, `) and a vertex x in E

I Find for each vertex y in E the length Lx(y) of a shortest path
from x to y

3. Given a network (E , Γ, `)

I Find, for each pair x , y of vertices in E , the length of a shortest
path from x to y

4. Having solved problem 2
I Solve problem 1

Silvio Guimarães – Professor version Graph 16 de 35

Computing the lengths of shortest paths

Algorithm DIJKSTRA (Data: (E , Γ, `), n = |E |, x ∈ E ;
Result: Lx)

S := ∅;
For each y ∈ E Do Lx [y] =∞ ; S := S ∪ {y};
Lx [x] := 0; k := 0; µ := 0;
While k < n and µ 6=∞ Do

I Extract a vertex y? ∈ S such that Lx [y?] = min{Lx [y], y ∈ S}
I k + +; µ := Lx [y?];
I For each y ∈ Γ(y?) ∩ S Do

I Lx [y] := min{Lx [y], Lx [y?] + `(y?, y)};

Silvio Guimarães – Professor version Graph 17 de 35

Computing the lengths of shortest paths

I Exercise. Execute “by hand” Dijsktra algorithm on the following
network with x = a, and on any positive length network of your
choice

a

b

c

d

e

f

2

8

5

3

1

4
1

1

1

1

Silvio Guimarães – Professor version Graph 17 de 35

Loop invariant of Dijkstra algorithm (# 1)

I Let x ∈ E and µ ∈ R
I A subset S of E is called a µ-separating (for x) if the two

following conditions hold true:

1. S contains any vertex y such that the length Lx(y) of a shortest
path from x to y is less than µ

2. S = E \ S contains any vertex y such that the length of a shortest
path from x to y is greater than µ

Silvio Guimarães – Professor version Graph 18 de 35

Loop invariant of Dijkstra algorithm (# 1)

I Let x ∈ E and µ ∈ R
I A subset S of E is called a µ-separating (for x) if the two

following conditions hold true:
1. S contains any vertex y such that the length Lx(y) of a shortest

path from x to y is less than µ

2. S = E \ S contains any vertex y such that the length of a shortest
path from x to y is greater than µ

Silvio Guimarães – Professor version Graph 18 de 35

Loop invariant of Dijkstra algorithm (# 1)

I Let x ∈ E and µ ∈ R
I A subset S of E is called a µ-separating (for x) if the two

following conditions hold true:
1. S contains any vertex y such that the length Lx(y) of a shortest

path from x to y is less than µ
2. S = E \ S contains any vertex y such that the length of a shortest

path from x to y is greater than µ

Silvio Guimarães – Professor version Graph 18 de 35

Loop invariant of Dijkstra algorithm (# 2)

I Let x ∈ E , let µ ∈ R, and let S be a set that is µ-separating for x

I An S-path is a path whose intermediary vertices are all in S

I The length of a shortest S-path from x to y is denoted by LSx (y)

Property (proof of Dijkstra algorithm)

I Let y? ∈ S such that LSx (y?) = min{Lsx(y) | y ∈ S}

I Then, LSx (y?) = Lx(y?)

I Thus, S ∪ {y?} is a set that is µ′-separating with µ′ = LSx (y?)

Silvio Guimarães – Professor version Graph 19 de 35

Loop invariant of Dijkstra algorithm (# 2)

I Let x ∈ E , let µ ∈ R, and let S be a set that is µ-separating for x

I An S-path is a path whose intermediary vertices are all in S

I The length of a shortest S-path from x to y is denoted by LSx (y)

Property (proof of Dijkstra algorithm)

I Let y? ∈ S such that LSx (y?) = min{Lsx(y) | y ∈ S}

I Then, LSx (y?) = Lx(y?)

I Thus, S ∪ {y?} is a set that is µ′-separating with µ′ = LSx (y?)

Silvio Guimarães – Professor version Graph 19 de 35

Loop invariant of Dijkstra algorithm (# 2)

I Let x ∈ E , let µ ∈ R, and let S be a set that is µ-separating for x

I An S-path is a path whose intermediary vertices are all in S

I The length of a shortest S-path from x to y is denoted by LSx (y)

Property (proof of Dijkstra algorithm)

I Let y? ∈ S such that LSx (y?) = min{Lsx(y) | y ∈ S}

I Then, LSx (y?) = Lx(y?)

I Thus, S ∪ {y?} is a set that is µ′-separating with µ′ = LSx (y?)

Silvio Guimarães – Professor version Graph 19 de 35

Loop invariant of Dijkstra algorithm (# 2)

I Let x ∈ E , let µ ∈ R, and let S be a set that is µ-separating for x

I An S-path is a path whose intermediary vertices are all in S

I The length of a shortest S-path from x to y is denoted by LSx (y)

Property (proof of Dijkstra algorithm)

I Let y? ∈ S such that LSx (y?) = min{Lsx(y) | y ∈ S}
I Then, LSx (y?) = Lx(y?)

I Thus, S ∪ {y?} is a set that is µ′-separating with µ′ = LSx (y?)

Silvio Guimarães – Professor version Graph 19 de 35

Loop invariant of Dijkstra algorithm (# 2)

I Let x ∈ E , let µ ∈ R, and let S be a set that is µ-separating for x

I An S-path is a path whose intermediary vertices are all in S

I The length of a shortest S-path from x to y is denoted by LSx (y)

Property (proof of Dijkstra algorithm)

I Let y? ∈ S such that LSx (y?) = min{Lsx(y) | y ∈ S}
I Then, LSx (y?) = Lx(y?)

I Thus, S ∪ {y?} is a set that is µ′-separating with µ′ = LSx (y?)

Silvio Guimarães – Professor version Graph 19 de 35

Computing the lengths of shortest paths

Algorithm DIJKSTRA (Data: (E , Γ, `), n = |E |, x ∈ E ;
Result: Lx)

S := ∅;
For each y ∈ E Do Lx [y] =∞ ; S := S ∪ {y};
Lx [x] := 0; k := 0; µ := 0;
While k < n and µ 6=∞ Do

I Extract a vertex y? ∈ S such that Lx [y?] = min{Lx [y], y ∈ S}
I k + +; µ := Lx [y?];
I For each y ∈ Γ(y?) ∩ S Do

I Lx [y] := min{Lx [y], Lx [y?] + `(y?, y)};

Silvio Guimarães – Professor version Graph 20 de 35

Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

2

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

2

3

Example of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 22 de 35

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

2

3

4

Proof of Correctness

Silvio Guimarães – Professor version Graph 23 de 35

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?

Proof of Correctness

Silvio Guimarães – Professor version Graph 23 de 35

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?

s

x

u

y

v

p′

pu

The alternate s − v pathP
through x and y already too long
by the time it had left the set S

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths.

I Union of shortest paths output form a tree. Why?

Silvio Guimarães – Professor version Graph 24 de 35

Implementing Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 25 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? .
I In each iteration, for each node v 6∈ S , compute

mine=(u,v),u∈S d(u) + le .

Implementing Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 25 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? .

I In each iteration, for each node v 6∈ S , compute
mine=(u,v),u∈S d(u) + le .

Implementing Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 25 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node v 6∈ S , compute
mine=(u,v),u∈S d(u) + le .

Implementing Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 25 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? n − 1.
I In each iteration, for each node v 6∈ S , compute

mine=(u,v),u∈S d(u) + le .

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 26 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.

I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked?

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 26 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked?

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 26 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked?

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 26 de 35

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked? n − 1 and m

times, respectively.

Single Source Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le . Note that the weights may be negative.

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

all other nodes in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R , and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães – Professor version Graph 27 de 35

Single Source Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le . Note that the weights may be negative.

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

all other nodes in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R , and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães – Professor version Graph 27 de 35

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 28 de 35

Dijkstra – Can fail if negative edge costs.

a

b

d

c

a

1

3

-6

2

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 28 de 35

Dijkstra – Can fail if negative edge costs.

a

b

d

c

a

1

3

-6

2

Re-weighting – Adding a constant to every edge weight can fail

b

d

c e

a

3

2

-3

3

2

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 28 de 35

Dijkstra – Can fail if negative edge costs.

a

b

d

c

a

1

3

-6

2

Re-weighting – Adding a constant to every edge weight can fail

b

d

c e

a

6

5

0

6

5

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 29 de 35

If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.

a

b

d

c

a

1

3

-6

-5

2

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 29 de 35

If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.

a

b

d

c

a

1

3

-6

-5

2

The Bellman-Ford algorithm is a way to find single source
shortest paths in a graph with negative edge weights (but no
negative cycles).

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 30 de 35

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 30 de 35

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 30 de 35

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

Bellman-Ford Algorithm

Silvio Guimarães – Professor version Graph 30 de 35

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

OPT (i , v) =

0, if i = 0

min

{
OPT (i − 1, v)
min{OPT (i − 1,w) + cvw}

, otherwise

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 31 de 35

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 31 de 35

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)

I For finding the shortest paths, it is necessary to maintain a
successor for each table entry.

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 31 de 35

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 31 de 35

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

How to detect negative cycles?

Shortest path – an example

Silvio Guimarães – Professor version Graph 32 de 35

a

b

d

c

e

f

g h

e

9

5

8

5

20

9

11

13

1

7

6

4 12

15

3

4

Compute the shortest path from e to all other nodes!

Complexity

Complexity

I Initialization: O(n)

I While loop (line 4): O(n)

I Extract (line 5): O(n2)

I For each loop (line 7): O(n + m)

I DIJKSTRA: O(n)

I can be easily reduced to O(n log(n) + m)

Silvio Guimarães – Professor version Graph 33 de 35

Complexity

Complexity

I Initialization: O(n)

I While loop (line 4): O(n)

I Extract (line 5): O(n2)

I For each loop (line 7): O(n + m)

I DIJKSTRA: O(n)

I can be easily reduced to O(n log(n) + m)

Silvio Guimarães – Professor version Graph 33 de 35

Exercise

I Propose an algorithm whose data are:
I a positive lengths network N
I a pair (x , y) of vertices

I and whose result is:
I a shortest path from x to y if such path exists

Help. Start by computing the lengths Lx(z) for all vertices z ∈ E using
Dijkstra algorithm.

Silvio Guimarães – Professor version Graph 34 de 35

Acknowledgement

Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me
the slides used in the Morpho, Graph and Image course. Some slides of
the Graph-based Image Processing course at PPGINF/PUC Minas
under supervision of Prof. Silvio Guimarães will be adapted versions of
that course.

I Course - MorphoGraph and Imagery
https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/

I Jean Cousty
I ESIEE Paris, Département Informatique
I Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
I E-mail: j.cousty@esiee.fr

Silvio Guimarães – Professor version Graph 35 de 35

	Shortest Path Problem
	Algorithms for Single Source Shortest Path
	Dijkstra Algorithm
	Bellman-Ford

