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Shortest Path Problem

I G = (V ,E ) is a connected directed graph. Each edge e has a
length le ≥ 0 .

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

each node in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E ), a function l : E → R+, and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.
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Network

Definition

I A network is a triple N = (E , Γ, `) such that
I (E , Γ) is a graph without loop; and
I ` is a map from

−→
Γ in R

I If (E , Γ, `) is a network and if u ∈
−→
Γ is an arc, the real

number `(u) is called the length of u
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Notations

I Here, N = (E , Γ, `) denotes a network, and G denotes the graph
G = (E , Γ)

I If u = (x , y) is an arc of G , we write `(x , y) instead of `((x , y))
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Length of a path

I Let π = (x0, . . . , xn) be a path in G

I The length of π (in N) is the sum of the length of the arcs in π:
I L(π) =

∑
{`(xi , xi+1) | 0 ≤ i ≤ n − 1}
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L((x0, x1, x3)) = 8
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Shortest path

I Let x and y be two vertices of G
I A shortest path from x to y (in N) is a path π from x to y such

that the length of π is less than or equal to the length of
any other path from x to y :

I ∀π′ path from x to y , L(π) ≤ L(π′)
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Shortest path: illustration
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Example

I π = (x0, x1, x3)

is not a shortest path from x0 to x3 (L(π) = 8)
I π = (x0, x1, x4, x3) is a shortest path from x0 to x3 (L(π) = 7)

I

There is no

shortest path from x2 to x0

?

I

There is no

shortest path from x7 to x9

?
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Negative circuit
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Definition

I A negative circuit in N is a circuit of negative length

Remark. If a strongly connected component has a negative circuit, then
there is no shortest path between any two arbitrary vertices of this
component
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Existence of a shortest path

Property

I There exists a shortest path from x to any other vertex in E if and
only if

I ∀y ∈ E , ∃ a path from x to y
I there is no negative circuit in N
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Shortest path or negative circuit?

I There exist algorithms for
1. Finding shortest paths if they exist and

2. Detecting if a graph has a negative circuit

I For instance, Bellman algorithm
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Positive lengths network

I A positive length network is a network (E , Γ, `) such that:

I ∀u ∈
−→
Γ , `(u) ≥ 0

Property

I If (E , Γ, `) is a positive lengths network, then ∀x , y ∈ E
I ∃ a path from x to y ⇔ ∃ a shortest path from x à y
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Shortest paths

I Let N = (E , Γ, `) be a positive lengths network, let x ∈ E

I We define the map Lx : E → R ∪ {∞} by:

Lx(y) =

{
the length of a shortest path from x to y , if such path exists
∞ , otherwise
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Illustration: the map Lx
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Example

y = x0 x1 x2 x3 x4 x5 x6

Lx0(y) =

0 3 ∞ 7 5 6 8
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Problems

1. Given a network (E , Γ, `) and two vertices x and y in E
I Find a shortest path from x to y
I Find the length Lx(y) of a shortest path from x to y

2. Given a network (E , Γ, `) and a vertex x in E

I Find for each vertex y in E the length Lx(y) of a shortest path
from x to y

3. Given a network (E , Γ, `)

I Find, for each pair x , y of vertices in E , the length of a shortest
path from x to y

4. Having solved problem 2
I Solve problem 1
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Dijkstra algorithm
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Computing the lengths of shortest paths

Algorithm DIJKSTRA ( Data: (E , Γ, `), n = |E |, x ∈ E ;
Result: Lx)

S := ∅;
For each y ∈ E Do Lx [y ] =∞ ; S := S ∪ {y};
Lx [x ] := 0; k := 0; µ := 0;
While k < n and µ 6=∞ Do

I Extract a vertex y? ∈ S such that Lx [y?] = min{Lx [y ], y ∈ S}
I k + +; µ := Lx [y?];
I For each y ∈ Γ(y?) ∩ S Do

I Lx [y ] := min{Lx [y ], Lx [y?] + `(y?, y)};
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Computing the lengths of shortest paths

I Exercise. Execute “by hand” Dijsktra algorithm on the following
network with x = a, and on any positive length network of your
choice
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f
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Loop invariant of Dijkstra algorithm (# 1)

I Let x ∈ E and µ ∈ R
I A subset S of E is called a µ-separating (for x) if the two

following conditions hold true:

1. S contains any vertex y such that the length Lx(y) of a shortest
path from x to y is less than µ

2. S = E \ S contains any vertex y such that the length of a shortest
path from x to y is greater than µ
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Loop invariant of Dijkstra algorithm (# 2)

I Let x ∈ E , let µ ∈ R, and let S be a set that is µ-separating for x

I An S-path is a path whose intermediary vertices are all in S

I The length of a shortest S-path from x to y is denoted by LSx (y)

Property (proof of Dijkstra algorithm)

I Let y? ∈ S such that LSx (y?) = min{Lsx(y) | y ∈ S}

I Then, LSx (y?) = Lx(y?)

I Thus, S ∪ {y?} is a set that is µ′-separating with µ′ = LSx (y?)
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Computing the lengths of shortest paths

Algorithm DIJKSTRA ( Data: (E , Γ, `), n = |E |, x ∈ E ;
Result: Lx)

S := ∅;
For each y ∈ E Do Lx [y ] =∞ ; S := S ∪ {y};
Lx [x ] := 0; k := 0; µ := 0;
While k < n and µ 6=∞ Do

I Extract a vertex y? ∈ S such that Lx [y?] = min{Lx [y ], y ∈ S}
I k + +; µ := Lx [y?];
I For each y ∈ Γ(y?) ∩ S Do
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Dijkstra’s Algorithm

Silvio Guimarães – Professor version Graph 21 de 35

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).
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Dijkstra’s Algorithm
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Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).
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5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).
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Proof of Correctness
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I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?
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I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?

s

x

u

y

v

p′

pu

The alternate s − v pathP
through x and y already too long
by the time it had left the set S



Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths.

I Union of shortest paths output form a tree. Why?
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Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? .
I In each iteration, for each node v 6∈ S , compute

mine=(u,v),u∈S d(u) + le .
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Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] + W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.

I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked?
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I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked? n − 1 and m

times, respectively.



Single Source Shortest Path Problem

I G = (V ,E ) is a connected directed graph. Each edge e has a
length le . Note that the weights may be negative.

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

all other nodes in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E ), a function l : E → R , and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.
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Bellman-Ford Algorithm
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Dijkstra – Can fail if negative edge costs.
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Bellman-Ford Algorithm
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If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.
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If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.
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The Bellman-Ford algorithm is a way to find single source
shortest paths in a graph with negative edge weights (but no
negative cycles).



Bellman-Ford Algorithm
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OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges
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OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

OPT (i , v) =


0, if i = 0

min

{
OPT (i − 1, v)
min{OPT (i − 1,w) + cvw}

, otherwise



A Faster implementation of Dijkstra’s Algorithm
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Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v ] = d [i − 1, v ]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v ] = min{d [i , v ], d [i − 1,w ] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.
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Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v ] = d [i − 1, v ]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v ] = min{d [i , v ], d [i − 1,w ] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

How to detect negative cycles?



Shortest path – an example
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Compute the shortest path from e to all other nodes!



Complexity

Complexity

I Initialization: O(n)

I While loop (line 4): O(n)

I Extract (line 5): O(n2)

I For each loop (line 7): O(n + m)

I DIJKSTRA: O(n)

I can be easily reduced to O(n log(n) + m)

Silvio Guimarães – Professor version Graph 33 de 35



Complexity

Complexity

I Initialization: O(n)

I While loop (line 4): O(n)

I Extract (line 5): O(n2)

I For each loop (line 7): O(n + m)

I DIJKSTRA: O(n)

I can be easily reduced to O(n log(n) + m)

Silvio Guimarães – Professor version Graph 33 de 35



Exercise

I Propose an algorithm whose data are:
I a positive lengths network N
I a pair (x , y) of vertices

I and whose result is:
I a shortest path from x to y if such path exists

Help. Start by computing the lengths Lx(z) for all vertices z ∈ E using
Dijkstra algorithm.

Silvio Guimarães – Professor version Graph 34 de 35



Acknowledgement

Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me
the slides used in the Morpho, Graph and Image course. Some slides of
the Graph-based Image Processing course at PPGINF/PUC Minas
under supervision of Prof. Silvio Guimarães will be adapted versions of
that course.

I Course - MorphoGraph and Imagery
https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/

I Jean Cousty
I ESIEE Paris, Département Informatique
I Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
I E-mail: j.cousty@esiee.fr

Silvio Guimarães – Professor version Graph 35 de 35


	Shortest Path Problem
	Algorithms for Single Source Shortest Path
	Dijkstra Algorithm
	Bellman-Ford


