

Graph-based image processing

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

1 Trees and arborescences

2 Examples of application

Graph-based image processing

— Trees and arborescences —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

▶ In the sequel, the symbol G denotes an asymmetric graph (E, Γ)

Isthmus

Isthmus

Definition

The arc u is an isthmus for G if the number of connected components of (E, T \ {u}) is greater than the one of G

Example

► The arc u is an isthmus for G if and only if the arc u does not appear in any cycle of G

► The arc u is an isthmus for G if and only if the arc u does not appear in any cycle of G

Property

- Let n = |E| and $m = |\overrightarrow{\Gamma}|$
- If G is connected, then $m \ge n-1$

► The arc u is an isthmus for G if and only if the arc u does not appear in any cycle of G

Property

- Let n = |E| and $m = |\overrightarrow{\Gamma}|$
- If G is connected, then $m \ge n-1$
- If G has no cycle, then $m \le n-1$

• A tree is a connected graph that has no cycle

• A tree is a connected graph that has no cycle

Remark. In a tree, each arc is an isthmus

• The four following statements are equivalent:

- 1. G is a tree
- 2. G is connected and m = n 1
- 3. G has no cycle and m = n 1
- 4. for any pair of two distinct vertices x and y in E, there exists a unique elementary undirected path from x to y

Root

- Let x be a vertex in E
- ► x is a root of G if E is the transitive closure of {x} (i.e., if, for each vertex y ∈ E, there exists a path from x to y)

Root

- Let x be a vertex in E
- ► x is a root of G if E is the transitive closure of {x} (i.e., if, for each vertex y ∈ E, there exists a path from x to y)

Arborescence

Definition

• An arborescence is a tree for which there is a root

Arborescence

Definition

• An arborescence is a tree for which there is a root

Arborescence

- ► An arborescence is a tree for which there is a root
- ► A vertex x of an arborescence is a leaf if it has no successor

Properties of arborescences

Property

► If G is an arborescence, there exists a unique vertex in E that is a root of G

Properties of arborescences

Property

- ► If G is an arborescence, there exists a unique vertex in E that is a root of G
- ► An arborescence can be decomposed into levels

Graph-based image processing

— Examples of application —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

- Let $P = \{p_1, \ldots, p_8\}$ be a set of 8 coins
 - 7 coins have the same weight
 - 1 is lighter than the others
- Let us consider a balance with two states $(<,\geq)$
- Problem. Find the lightest coin

Decision arborescence: example

Decision arborescence

Definition

• Let P be a finite set (of possible solutions)

Silvio Guimarães

Decision arborescence

- Let P be a finite set (of possible solutions)
- ► A decision arborescence for P is a pair (G, f) such that
 - $G = (E, \Gamma)$ is an arborescence of root r
 - f is a map from E into $\mathcal{P}(P)$ that satisfies

•
$$f(r) = P$$

- $\forall x \in E \mid \Gamma(x) \neq \emptyset, f(x) = \cup \{f(y) \mid y \in \Gamma(x)\}$
- $\forall x \in E \mid \Gamma(x) \neq \emptyset, \ |f(x)| = 1$

 Same as 1 but the considered balance has 3 states (<,=,>) (instead of 2)

Exercise.

- ► Give a decision arborescence for this problem
- Give the number of necessary weighing to find the counterfeit coin?

Arithmetic expression evaluation

- An ordered graph on E is a pair (E, Γ) such that
 - Γ is a map from E into the set of (ordered) sequence of elements in E

- An ordered graph on E is a pair $(E, \mathring{\Gamma})$ such that
 - Γ is a map from E into the set of (ordered) sequence of elements in E

• Thus,
$$\mathring{\Gamma}(x) = (y_0, \dots, y_\ell)$$
 for a given value ℓ

- An ordered graph on E is a pair $(E, \mathring{\Gamma})$ such that
 - Γ is a map from E into the set of (ordered) sequence of elements in E
- Thus, $\mathring{\Gamma}(x) = (y_0, \dots, y_\ell)$ for a given value ℓ
- Any ordered graph (E, Γ) induces a graph (E, Γ)

- An ordered graph on E is a pair (E, Γ) such that
 - $\[\] \Gamma$ is a map from E into the set of (ordered) sequence of elements in E
- Thus, $\mathring{\Gamma}(x) = (y_0, \dots, y_\ell)$ for a given value ℓ
- Any ordered graph (E, Γ) induces a graph (E, Γ)
- (E, Γ) is an ordered arborescence if the graph (E, Γ) induced by (E, Γ) is an arborescence

A search arborescence

- \blacktriangleright Let $\mathbb V$ be a set totally ordered by the relation \leq
- Let $X \subseteq \mathbb{V}$

- \blacktriangleright Let $\mathbb V$ be a set totally ordered by the relation \leq
- Let $X \subseteq \mathbb{V}$
- A search arborescence on X is an ordered arborescence (X, Γ) such that
 - ► $\forall x \in X, 0 \leq |\Gamma(x)| \leq 2$
 - ∀x ∈ X | Γ̃(x) = (x₁, x₂), any element in the sub-arborescence rooted in x₁ is smaller than x and any element in the sub-arborescence rooted in x₂ is greater than x

Example

Graph-based image processing

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

- Write an algorithm that tests if a given value ν belongs to a search arborescence (X, Γ)
- Write an algorithm that prints the value of an arborescence (X, Γ) in increasing order

Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me the slides used in the Morpho, Graph and Image course. Some slides of the Graph-based Image Processing course at PPGINF/PUC Minas under supervision of Prof. Silvio Guimarães will be adapted versions of that course.

- Course MorphoGraph and Imagery https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/
- Jean Cousty
 - ESIEE Paris, Département Informatique
 - Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
 - E-mail: j.cousty@esiee.fr