

Graph-based image processing

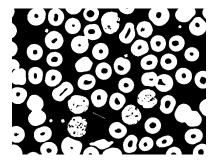
— Connected operators —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

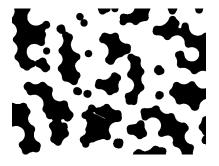
Aug 2022

Introduction: a problem seen during practical session



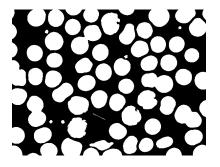
▶ Problem: Fill the holes of the cells

Introduction: a problem seen during practical session



- Problem: Fill the holes of the cells
- Closing by a structuring element,
 - Holes are closed
 - But contours "have moved"

Introduction: a problem seen during practical session



- Problem: Fill the holes of the cells
- Closing by a structuring element,
 - Holes are closed
 - But contours "have moved"
- A connected closing by reconstruction

- 1 Connectivity: reminder
- **2** Connected openings/closings: the case of sets
- 3 Connected opening: the case of grayscale images

4 Component tree

Graph-based image processing

— Connectivity: reminder —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Aug 2022

Connexity

- E is a set
- $G = (E, \Gamma)$ is a graph

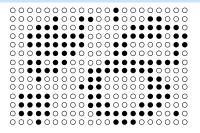
Definition

• Let $X \subseteq E$

► The subgraph of G induced by X is the graph
$$(X, \Gamma_X)$$
 such that
► $\overrightarrow{\Gamma_X} = \{(x, y) \in \overrightarrow{\Gamma} \mid x \in X, y \in X\}$

Definition

- Let $X \subseteq E$
- The subgraph of G induced by X is the graph (X, Γ_X) such that • $\overrightarrow{\Gamma_X} = \{(x, y) \in \overrightarrow{\Gamma} \mid x \in X, y \in X\}$
- A connected component of the subgraph of G induced by X is simply called a connected component of X



 $X \subseteq E$ (in black)

$$(E = \mathbb{Z}^2 \text{ et } \Gamma = \Gamma_4)$$

Definition

- Let $X \subseteq E$
- The subgraph of G induced by X is the graph (X, Γ_X) such that • $\overrightarrow{\Gamma_X} = \{(x, y) \in \overrightarrow{\Gamma} \mid x \in X, y \in X\}$
- A connected component of the subgraph of G induced by X is simply called a connected component of X

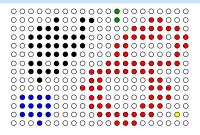


Partition of X into connected components

$$(E = \mathbb{Z}^2 \text{ et } \Gamma = \Gamma_4)$$

Definition

- Let $X \subseteq E$
- The subgraph of G induced by X is the graph (X, Γ_X) such that • $\overrightarrow{\Gamma_X} = \{(x, y) \in \overrightarrow{\Gamma} \mid x \in X, y \in X\}$
- A connected component of the subgraph of G induced by X is simply called a connected component of X
- C_X denotes the set of all connected components of X



$$(E = \mathbb{Z}^2 \text{ et } \Gamma = \Gamma_4)$$

Graph-based image processing

- Connected openings/closings: the case of sets -

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Connected openings/closings

Definition

• A filter γ on E is a connected opening if

• $\forall X \in \mathcal{P}(E), C_{\gamma(X)} \subseteq C_X$

• A filter ϕ on E is a connected closing if

•
$$\forall X \in \mathcal{P}(E), \ \mathcal{C}_{\overline{\gamma(X)}} \subseteq \mathcal{C}_{\overline{X}}$$

Connected openings/closings

Definition

• A filter γ on E is a connected opening if

• $\forall X \in \mathcal{P}(E), C_{\gamma(X)} \subseteq C_X$

• A filter ϕ on E is a connected closing if

•
$$\forall X \in \mathcal{P}(E), \ \mathcal{C}_{\overline{\gamma(X)}} \subseteq \mathcal{C}_{\overline{X}}$$

Property

• A connected opening γ is an opening

- $\blacktriangleright \quad \forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$
- $\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$
- $\forall X \in \mathcal{P}(E), \gamma(X) \subseteq X$

(increasing) (idempotent) (anti-axtensive)

Connected openings/closings

Definition

• A filter γ on E is a connected opening if

• $\forall X \in \mathcal{P}(E), C_{\gamma(X)} \subseteq C_X$

• A filter ϕ on E is a connected closing if

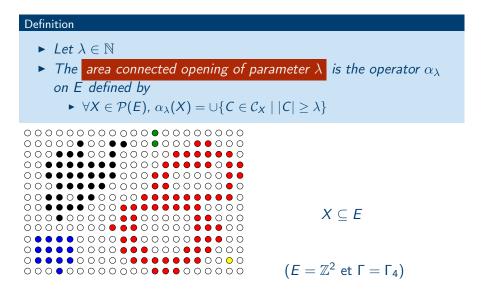
•
$$\forall X \in \mathcal{P}(E), \ \mathcal{C}_{\overline{\gamma(X)}} \subseteq \mathcal{C}_{\overline{X}}$$

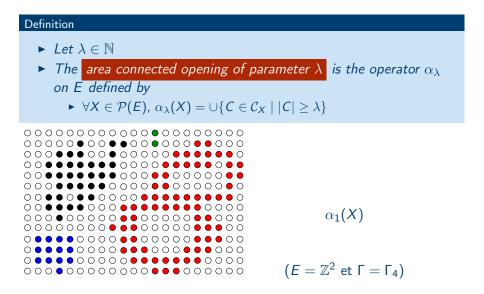
Property

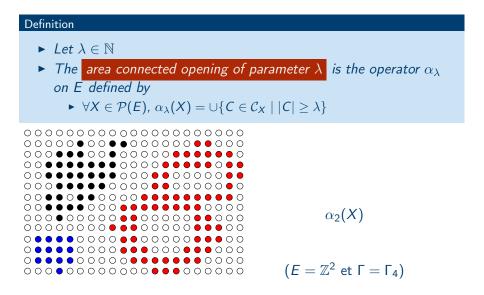
- A connected closing γ is a closing
 - $\blacktriangleright \quad \forall X, Y \in \mathcal{P}(E), \ X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$
 - $\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$
 - $\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$

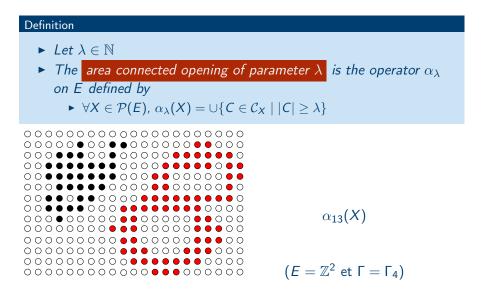
(increasing) (idempotence) (extensive)

Definition • Let $\lambda \in \mathbb{N}$ • The area connected opening of parameter λ is the operator α_{λ} on E defined by • $\forall X \in \mathcal{P}(E), \alpha_{\lambda}(X) = \cup \{C \in \mathcal{C}_X \mid |C| \ge \lambda\}$









Example: connected opening by reconstruction

Definition

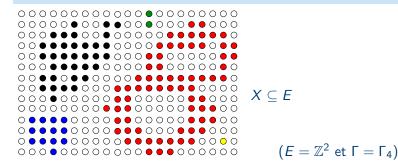
- Let $M \subseteq E$
- The opening by reconstruction of (the marker) M is the operator ψ_M on E defined by
 - $\forall X \in \mathcal{P}(E), \psi_M(X) = \cup \{C \in \mathcal{C}_X \mid M \cap C \neq \emptyset\}$

Definition

- Let $M \subseteq E$
- The opening by reconstruction of (the marker) M is the

operator ψ_M on E defined by

• $\forall X \in \mathcal{P}(E), \psi_M(X) = \cup \{C \in \mathcal{C}_X \mid M \cap C \neq \emptyset\}$



Definition

• Let $M \subseteq E$

► The opening by reconstruction of (the marker) M is the

operator ψ_M on E defined by

• $\forall X \in \mathcal{P}(E), \psi_M(X) = \cup \{C \in \mathcal{C}_X \mid M \cap C \neq \emptyset\}$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet \circ \circ \bullet \bullet \bullet$ 00 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet$ 00 ● ● ○ ● ● ○ ○ ∩ ○ ● ● ● ⊘ ⊘ ⊘ 00 $\mathbf{0}$ \cap

 $X \subseteq E$ et *M* (hatched dots)

$$(E = \mathbb{Z}^2 \text{ et } \Gamma = \Gamma_4)$$

Definition

• Let $M \subseteq E$

The opening by reconstruction of (the marker) M is the

operator ψ_M on E defined by

• $\forall X \in \mathcal{P}(E), \psi_M(X) = \cup \{C \in \mathcal{C}_X \mid M \cap C \neq \emptyset\}$

 $\psi_M(X)$

 $(E = \mathbb{Z}^2 \text{ et } \Gamma = \Gamma_4)$

Property

• γ is a connected opening $\Leftrightarrow \star \gamma$ is a connected closing

Property

• γ is a connected opening $\Leftrightarrow \star \gamma$ is a connected closing

Property (contour preservation)

►
$$\forall X \in \mathcal{P}(E), \forall (x,y) \in \overrightarrow{\Gamma},$$

 $|\{x,y\} \cap \gamma(X)| = 1 \implies |\{x,y\} \cap X| = 1$

Graph-based image processing

- Connected opening: the case of grayscale images -

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Grayscale connected opening/closing

Definition (connected opening)

connected opening (on \mathcal{I}) if • An operator γ on \mathcal{I} is a

$$\bullet \ \forall F \in \mathcal{I}, \ \gamma(\gamma(F)) = \gamma(F)$$

(idempotence) (increasing)

- $\blacktriangleright \quad \forall F, H \in \mathcal{I}, \forall k \in \mathbb{Z}, F_k \subseteq H_k \implies \gamma(F)_k \subseteq \gamma(H)_k$ (connected, anti-extensive)
- $\forall F \in \mathcal{I}, \forall k \in \mathbb{Z}, C_{[\gamma(F)_k]} \subseteq C_{[F_k]}$

Definition (connected opening)

• An operator γ on \mathcal{I} is a connected opening (c

$$\bullet \quad \forall F \in \mathcal{I}, \ \gamma(\gamma(F)) = \gamma(F)$$

on
$$\mathcal{I})$$
 if

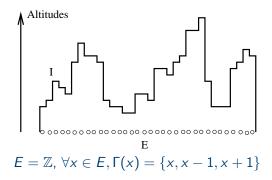
(idempotence) $\blacktriangleright \forall F, H \in \mathcal{I}, \forall k \in \mathbb{Z}, F_k \subseteq H_k \implies \gamma(F)_k \subseteq \gamma(H)_k$ (increasing) (connected, anti-extensive)

• $\forall F \in \mathcal{I}, \forall k \in \mathbb{Z}, C_{[\gamma(F)_k]} \subseteq C_{[F_k]}$

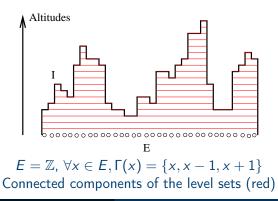
Definition (connected closing)

- An operator γ on \mathcal{I} is a connected closing (on \mathcal{I}) if
 - $\blacktriangleright \quad \forall F \in \mathcal{I}, \ \gamma(\gamma(F)) = \gamma(F)$ (idempotence)
 - $\blacktriangleright \forall F, H \in \mathcal{I}, \forall k \in \mathbb{Z}, F_k \subseteq H_k \implies \gamma(F)_k \subseteq \gamma(H)_k$ (increasing)
 - $\forall F \in \mathcal{I}, \forall k \in \mathbb{Z}, C_{[\overline{\gamma(F)_k}]} \subseteq C_{[\overline{F_k}]}$ (connected, extensive)

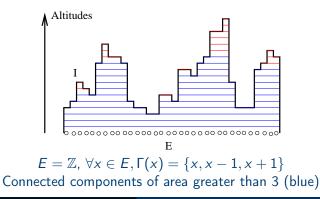
▶ The stack operator induced by α_{λ} (where $\lambda \in \mathbb{N}$) is a connected opening on \mathcal{I}



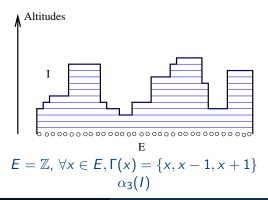
▶ The stack operator induced by α_{λ} (where $\lambda \in \mathbb{N}$) is a connected opening on \mathcal{I}



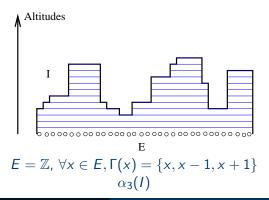
▶ The stack operator induced by α_{λ} (where $\lambda \in \mathbb{N}$) is a connected opening on \mathcal{I}



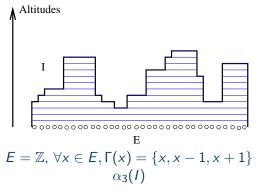
The stack operator induced by α_λ (where λ ∈ ℕ) is a connected opening on *I*



- ▶ The stack operator induced by α_{λ} (where $\lambda \in \mathbb{N}$) is a connected opening on \mathcal{I}
- The stack operator induced by ψ_M (where M ⊆ E) is a connected opening on *I*



- ▶ The stack operator induced by α_{λ} (where $\lambda \in \mathbb{N}$) is a connected opening on \mathcal{I}
- The stack operator induced by ψ_M (where M ⊆ E) is a connected opening on *I*
- ► The stack operator induced by any connected opening on *E* is a connected opening on *I*



Grayscale connected opening

Definition

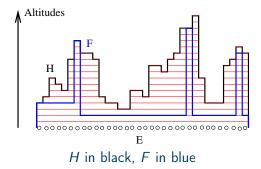
- Let $F \in \mathcal{I}$
- The opening by reconstruction of (the marker) F is the operator ψ_F on \mathcal{I} defined by
 - ► $\forall H \in \mathcal{I}, \forall k \in \mathbb{Z}, [\psi_F(H)]_k = \psi_{[F_k]}(H_k)$

Grayscale connected opening

Definition

The opening by reconstruction of (the marker) F is the operator ψ_F on I defined by

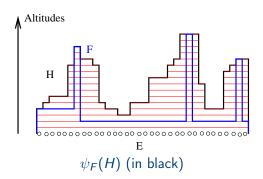
►
$$\forall H \in \mathcal{I}, \forall k \in \mathbb{Z}, [\psi_F(H)]_k = \psi_{[F_k]}(H_k)$$



Silvio Guimarães

Grayscale connected opening

Definition Let F ∈ I The opening by reconstruction of (the marker) F is the operator ψ_F on I defined by ∀H ∈ I, ∀k ∈ Z, [ψ_F(H)]_k = ψ_[Fk](H_k)



Silvio Guimarães

Property (duality)

- An operator φ is a connected closing on I if and only if its dual *φ is a connected opening on I, where
 - $\blacktriangleright \quad \forall F \in \mathcal{I}, \, \star \phi(F) = -\phi(-F)$

Property (duality)

- An operator φ is a connected closing on I if and only if its dual *φ is a connected opening on I, where
 - $\forall F \in \mathcal{I}, \star \phi(F) = -\phi(-F)$

Property (contour preservation)

If γ is a connected opening or closing on I, then
 ∀F ∈ I, ∀(x, y) ∈ Γ, γ(F)(x) ≠ γ(F)(y) ⇒ F(x) ≠ F(y)

Graph-based image processing

– Component tree —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Problem

- How to implement a connected operator?
 - ► Data structure: component tree
- How to build other connected operators?
 - Criterion on the nodes of the component tree

In the following, the symbol *I* denotes a grayscale image on *E*: *I* ∈ *I*

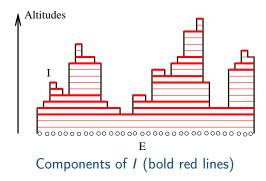
Connected component of an image

Definition

 We denote by C₁ the union of the sets of connected components of the level sets of I

$$\bullet \ \mathcal{C}_I = \cup \{ \mathcal{C}_{[I_k]} \mid k \in \mathbb{Z} \}$$

• Each element in C_I is called a connected component of I



Silvio Guimarães

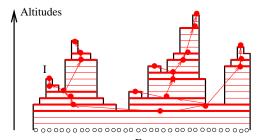
Component tree

Definition

- Let C_1 and C_2 be two components of I in C_1
- We say that C_1 is a child of C_2 (for I) if

•
$$C_1 \subseteq C_2$$

• $\forall C' \in C_1$, if $C_1 \subseteq C' \subseteq C_2$ then $C' = C_2$ or $C' = C$



The relation "is child of" is represented by red arrows

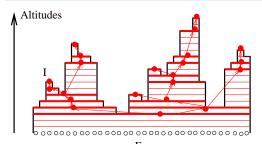
Component tree

Definition

- We say that C_1 is a child of C_2 (for I) if
 - $C_1 \subseteq C_2$ • $\forall C' \in C_1$, if $C_1 \subseteq C' \subseteq C_2$ then $C' = C_2$ or $C' = C_1$

► The component tree of *I* is the graph $A_I = (C_I, \Gamma_I)$ such that

• $(C_1, C_2) \in \Gamma_I$ if C_2 is a child of C_1

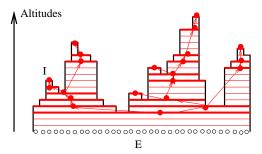


The relation "is child of" is represented by red arrows

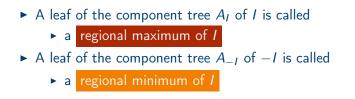
Arborescence

Property

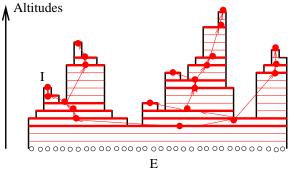
If the graph (E, Γ) is connected, then the component tree of I is an arborescence of root E



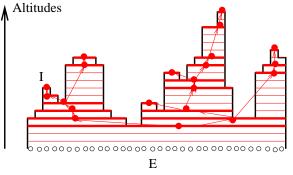
Simplifying an image by razings



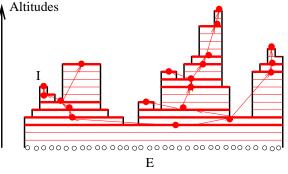
- ► Given a criterion, it is possible to iteratively remove the leaves of the tree A_I
- Such removal is called a razing



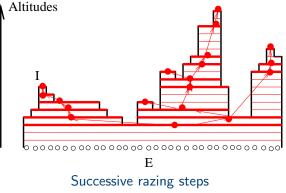
Successive razing steps



Successive razing steps



Successive razing steps



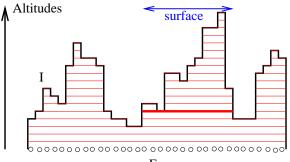
A maximum has been removed

Definition

- Let $x \in E$
- The elementary razing ν_x of I at x is defined b
 - $[\nu_x(I)](y) = I(y) 1$ if x and y belong to a same maximum of I
 - $[\nu_x(I)](y) = I(y)$ otherwise

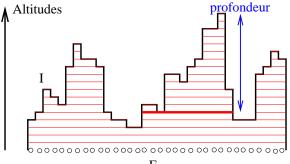
 An image obtained from I by composition of elementary razings is called a razing of I

▶ What criterion (attribute) for selecting a maxima to raze?



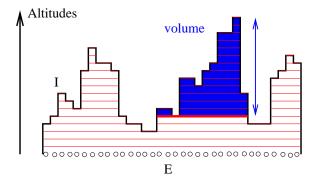
Е

Razing by depth, or dynamics



Е

Razing by volume



- ► The dual of a razing is called a flooding
- ► A flooding removes minima by iteratively increasing their values

- The dual of a razing is called a flooding
- ► A flooding removes minima by iteratively increasing their values

Property (contour preservation)

- ▶ If F is a razing or a flooding of I, then • $\forall (x, y) \in \overrightarrow{\Gamma}, F(x) \neq F(y) \implies I(x) \neq I(y)$

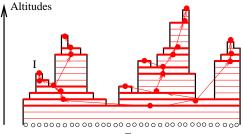
- ► The dual of a razing is called a flooding
- \blacktriangleright A flooding removes minima by iteratively increasing their values

Property (contour preservation)

► If F is a razing or a flooding of I, then ► $\forall (x, y) \in \overrightarrow{\Gamma}$, $F(x) \neq F(y) \implies I(x) \neq I(y)$

Remark. An operator produces razings is not necessarily an opening (counter-examples: razing by dynamics or volume)

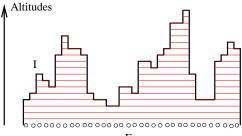
- Draw the image F obtained by razings all components of depth is less than 12
- Compare the number of maxima of F and of I



Е

Exercise

- Draw the image H obtained by the dual of the previous one, (*i.e.*, the flooding that removes all components of depth is less than 12)
- Help
 - 1. Draw -I
 - 2. Apply a razing to -I
 - 3. Inverse the obtained result
- Compare the numbers of minima of H and of I



Thanks to the Prof. Jean Cousty at ESIEE/France that gently sent me the slides used in the Morpho, Graph and Image course. Some slides of the Graph-based Image Processing course at PPGINF/PUC Minas under supervision of Prof. Silvio Guimarães will be adapted versions of that course.

- Course MorphoGraph and Imagery https://perso.esiee.fr/ coustyj/EnglishMorphoGraph/
- Jean Cousty
 - ESIEE Paris, Département Informatique
 - Université Paris-Est, LIGM (UMR CNRS, ESIEE...)
 - E-mail: j.cousty@esiee.fr