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Plan  of  the  Course
I) Basic concepts

II) Erosions et dilations:
a) Sets
b) Functions
c) Gradients

III)  Openings and Closings:
a) Morphological type
b) Algebraic type
c) Granulometries
d) Top-hats

IV) Morphological filtering:
a) Alternating Filters
b) Sequential Alternating Filters
c) Activity, Centre et Contrast

V) Geodesy et connectivity:
a)   Metrics et dilation
b)   Reconstruction  and connectivity
c)    Numerical Geodesy

VI) Applications  of  Geodesy :
a)   Binary
b)   Numerical

VII) Skeletons :
a)   Ultimate Erosion
b)   Skeleton
c)   Conditional Bisector

VIII)  Thinnings and Thickenings:
a)    Hit-or-Miss Transformation
c)    Thinnings and Homotopy

IX)   Basins and Watersheds:
a)   SKIZ
b)   Minima  and Basins
c)   Watersheds by Flooding

X)  Segmentation:
a)  MISP
b)  Mosaic image and Pyramids
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- I -

Basic Notions  
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Image Proccessing (II)

2) Extraction of Characteristics:

The aim here is to improve image
quality or to exhibit some of its
features. This includes in
particular measurements, noise
reduction, and filtering.

3) Segmentation:

Segmentation consists in
partitioning the images into zones
which are homogeneous according
to a given criterion.

Image2
Image1 Image

Tranformations

Numbers

Pixels Regions
Segmentation
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Basic structure

Linear signal processing:

The basic structure in linear signal
processing is the vector space i.e.:
1) A set of vectors V

and a set of scalars K such that

2) V is a commutative group ;
K is a field ;
There exists an external law of

multiplication between scalars and
vectors.

Mathematical morphology:

The basic structure is a complete lattice
i.e. a set L such that:
1) L is provided with a partial ordering,

i.e. a relation £ such that
A £A
A £ B, B £ A Þ A = B
A £ B, B £ C Þ A £ C

2) For each family of elements {Xi}ÎP,
there exists in L :

a Max. lower bound ‚{Xi}, called inf
a Min. upper bound ƒ{Xi}, called sup



J. Serra,  Ph. Salembier, S. Beucher                                                                               Ecole des Mines de Paris (1996) Cours Morpho  I. 6

Foundations of mathematical morphology

Mathematical morphology:

=> The working structure is the lattice, where the basic
laws are the supremum and the infimum:

• The useful operations are those preserving the
structure (order) and commuting with the laws:

Preserve the order:

=> Increasing operations

Commute with Sup.:

=> Dilation

Commute with Inf.:

=> Erosion

Linear signal processing:

=> The working structure is
a vectorial space, and
the fundamental laws are
the addition and the
scalar product:

• The useful operations
are those preserving the
working structure and
commuting with the
laws:

The resulting operation is
the convolution

j( ai XiS
i

) = ai j(Xi)S
i

X £Y  Þ j(X) £ j(Y)

j ( XiÚ
i

) = j(Xi)Ú
i

j( XiÙ
i

) = j(Xi)Ù
i
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Notion of residues in morphology

• The theory of morphological
filters has highlighted the
increasing and idempotence
properties, as well as the
ordering rules between
transformations.

• There is a family of
transformations which studies
the difference between two (or
many) basic transformations.
Their common basis relies on
the notion of difference also
called residue.

Residue

Primitive: 
y

Primitive: 
q

Difference
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Classification of residues

• The residues that are used in practice can be classified in three groups:
1) Residues of two primitives
2) Residues of two family of primitives
3) Residues relying on "hit or miss" transformations

Residue with "hit or miss" 
transformations

Residues

Two primitives: q, y Two families of primitives: 
{q }, {y }

Examples: 
• Gradient 
• Top hat

Examples: 
• Ultimate erosion 
• Skeleton 
• Conditional bisector

Examples: 
• Thinning 
• Thickenning 
• SKIZ

i i
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Basic Notions

Erosion and Dilation:
- for  Sets
- for  Functions

Gradient and Laplacian

Section II  : Dilation, Erosion 



J. Serra,  Ph. Salembier, S. Beucher                                                                               Ecole des Mines de Paris (1996) Cours Morpho  I. 10

Translation invariance and Structuring Element

• A large number (not all) of morphological transforms study the lattice structure in
a translation invariant way.

• In case of sets, since dilation commutes with union, the dilate of a set X is nothing
but the union of the dilates of each of its points. Now, by translation invariance all
these elementary dilates are the same, up to a translation. The operation is thus
characterized by the transform of the origin, called structuring element.

• By the same way, in case of functions, the property of (spatial and vertical)
translation invariance generates the notion of a structuring function.

Examples of structuring elements:

Origin
Origin

Structuring set Structuring function
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Set Translation  Invariance

• Suppose set E equipped with a translation t .The operations y: P(E)®P(E) which are
translation invariant are called t-applications .

• Then, the two basic dilations on P(E) are: 
– The Minkowski Addition , which is the unique t-dilatation,
– The Geodesic Dilation, which is limited to a given mask .

• for all XÍE, introduce:
1) set XB , translate of X according to vector b :

XB = {x+b, x Î X}

2)  set X , transposed or reflected of X :
X = { -x , x Î X} 

we have: x Î Bz ! z - x Î B . Note that B is symmetrical when it is equal to its 
transposed.

v

v

v

Origin
Transposition
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Set Dilation and Minkowski Addition

Structuring
element

Dilation

• We have seen that every Minkowski Addition
is a dilation dB characterized by its Stucturing
Element B. dB(X) is denoted by X"B. We have
:

Now,  zÎdB(X)  Û { b = z-xÎB  et  xÎX }

Û { $x: x Î BzÇ X }

• Hence the dilate of X by B is the locus of 
those points z such that the transposed set Bz
hits X :

• dB(X) = { z:  Bz € X ¹ Æ}

X"B =  # { Bx ,  xÎX}

= { x + b,  xÎX,  bÎB } = # { Xb,  bÎB }

v

v

v
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Set Erosion and Minkowski Substraction

• The Minkowski substraction of X  by B is 
the erosion X$B adjoint to X"B .

• It turns out to be the locus of the positions 
of the centre z of the structuring element Bz
when the latter is included in X : 

eB(X) = X$B = { z :  Bz Ì X  }
Now : 

Bz Ì X  Û  "bÎB:  b+zÎX Û"bÎB:  zÎX-b

hence :

X$B = € { Xb, b Î B } 
v

structuring element  

Erosion
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1) Increasingness and distributivity:

2) Adjunction :
X Í eB (Y) = X$B Û dB (X) = X"B Í Y

3) Semi-group: The composition product of two dilations (resp. erosions) is still a dilation
(resp. erosion). Indeed, we have:

dB2dB1(X)   =   È { B2(y) , yÎ È { B1(x) , xÎX }   =    È {dB2[B1(x)] , xÎX } ,

which results in the non commutative rule:

d
B2
d

B1  =  dA ;      eB2
e

B1 =  eA with        A  =  dB2
(B1)

4) information: Semi-group Þno inverse Û dilation and erosion can only loose information.

Properties of Minkowski Operations (I)

eB(XÇY) = eB(X)ÇeB(Y)

dB(XÈY) = dB(X)ÈdB(Y)
X Ì Y Þ {eB(X) Ì eB(Y)

dB(X) Ì dB(Y)
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Properties of Minkowski Operations (II)

:
si 0 Î B  Þ { eB(X) Ì X

X Ì dB(X)

0 Î B 0  Ï B

x

original

dilatation

original

dilatation

5)  Duality under complement:
Let y* be the dual version of eB for complément

•y*(X) = [eB(Xc)]c = [Ç{(Xb)
c, -b Î B}]c

i.e.: y*(X) = È{Xb, -b Î B}= dB(X) 

(we find the adjonction iff B is symmetrical)     

Adjunction

ErosionCompl. Compl.
.

=

Erosion

6)  Extensivity :

Dilation is extensive and erosion
is anti-extensive if and only if B
contains the origin
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Properties of Minkowski Operations (III)

7) Convex Structuring Elements :

• In the Euclidean space Rn denote by lB the homothétics of B by factor l. The semi-goup
law:

[( X Å lB) Å µB)] = X Å (l + µ) B

is satisfied if and only if B is compact convex (x,y ÎB => [x,y]ÎB). Moreover, if B is
plane and symmetrical, it is equal to a product of dilations by segments.

• Practically, the dilation (resp. the erosion) of a set X by the convex structuring element 
lB reduces to l dilations (resp. erosions) by the structuring element B. Itération acts as a 
magnification factor.

" ="" =
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Equivalence between Sets and Functions

A function can be viewed as a stack of decreasing sets. Each set is the intersection
between the function and a plane of constant level.

If f is a function, the following inclusion holds:

Function

l

F unction

Sets

F unction  =>  Sets Sets => F unction

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

Stack of  
sets

Xf(l) = {x Î R, f(x) ³ l}   Û    f(x)  = Sup{ l such that x ÎXf(l)}

" µ £ l Î R,  Xf(l) Ì Xf(µ)
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Dilation and Erosion by a flat structuring Element

Definition: The dilation (erosion)
of a function by a flat structuring
element can be defined as the
dilation (erosion) of each set Xf(l)
by a set B. This definition leads to
the following formula:

• The erosion shrinks positive pics. Pics thinner that the structuring element disappear.
• The dilation expands positive pics.
• Effects on negative pics are dual (the erosion expands them, the dilation shrinks them).

X$B= eB(f(x)) = [f(x-y)]inf
yÎB

X"B= dB(f(x)) = [f(x-y)]sup
yÎB 806040200
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Morphological Gradients

Gradient by erosion:
• It is the residue between the identity

and an erosion , i.e.:
for sets
for functions

Goal:
The goal of gradients transformations is to highlight contours. In digital morphology,

three gradients based on the unit disc are defined:

Gradient by dilation:
• It is the residue between a dilation and

the identity, i.e. :
for sets
for functionsg -(f)  = f - e(f) g +(f)  = d(f) - f

g -(X)  = X \ e(X) g +(X)  = d(X) \ X

Original
Erosion

Gradient

Original

Dilation

Gradient
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Morphological Gradients (II) and Laplacian

Symmetrical gradient:
• It is the residue between a dilation and

an erosion:
for sets
for functions g(f)  = (d(f) - e(f))/2

Laplacian:
• It is the residue between the gradients

by dilation and erosion, for functions :
g(X)  = d(X) \ e(X) L(f)  = g+(f) - g-(f)

Note: These notions correspond the "classical" notions of gradients and laplacians (if they
exist), in the limit, when the radius of disc tends towards zero.

Original
Dilation

Gradient

Erosion
Original

Dilation

Laplacian

Erosion
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Non Flat Structuring Elements

• Flat structuring elements can be viewed as a function of constant level, equals to 0,
and whose support is the structuring set. These structuring elements can be
generalized by introducing the notion of weights. The resulting elements are non
flat.

Support of 
element

Flat 
element

Support of 
element

Non flat 
element
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Dilation and Erosion of Functions with non Flat Elements

Definition:

With non flat structuring elements,
dilation and erosion are defined as:

Note:
The values of the structuring element
weights should have the same
dimension as the signal.

Comparison with the convolution:
A parallelism between the erosion /
dilation formulas and the
convolution can be done

Convolution / Morphology
Sum. <=> Sup. or Inf.
Product <=> Sum.

X"B= dh(x)(f(x)) = [f(x-y)+h(y)]sup
yÎH

X$B= eh(x)(f(x)) = [f(x-y)-h(y)]inf
yÎH

g(x) =h(x) * f(x) = f(y-x) . h(y)S
yÎH

g(x) = dh(x)(f(x)) = [f(x-y)+h(y)]sup
yÎH

g(x) = eh(x)(f(x)) = [f(x-y)-h(y)]inf
yÎH
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Distance function (I)

Definition:
• The distance function is an intermediate step between sets and functions.
• When a notion of distance has been defined, It is possible to associate with each

set X, its subset Xl composed of all the points which are at a distance larger
than l from its boundary.

• When l increases, the subsets are included within each other (and parallel in the
euclidean case). They can be considered as the horizontal thresholding of a
function whose grey level is l at x if x is at a distance l from the boundary. This
function is called Distance Function.

1 2 3 4

X



J. Serra,  Ph. Salembier, S. Beucher                                                                               Ecole des Mines de Paris (1996) Cours Morpho  I. 24

Distance Function 
(II)

Properties:
• If the distance is characterized by the sets of disks dl of size l, the subsets

Xl can be considered as the result of the erosions of X by the disks. More
precisely:

• Conversely, each family of symmetrical dilations which fulfills these three
rules defines a distance d which is characterized by:

is the disk of center y and radius l.dl(y)
d(x,y) = Inf {x Î dl(y)}= Inf {y Î dl(x)}

3)  I = Ù {dl,  l>0},      I:Identity

2)  dldµ £ dl+µ,     l,µ³ 0

1)  l ³ µ Þ dl ³ dµ
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Distance function (III): an Example

Set  X Corresponding Distance Function
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Distance function (IV): another Example

The journey of  Men and Women Tingary (Papunya, Australia)
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Section III: Opening, Closing 

Morphological Opening and Closing

Algebraic Opening and Closing

GranulometryTop-Hat Transformation
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Morphological Opening and Closing

The problem of an inverse operation:
• In the classical case of linear filter, the inverse filter is simply characterized by its

transfer function which is the inverse of the original filter transfer function.
• As an example, in the case of erosion, the type of nonlinearity which is involved does

not allow the existence of an inverse operation. Indeed, there exist a large number of
original signal which produce the same output by erosion:

However, among all possible "inverse", there is
a smaller one. It is obtained by composing the
erosion with the adjoint dilation.It is called
morphological opening, and denoted by:

Erosion

Structuring 
element

?

g B = dB eB (général case), 
XoB = [(X$B) Å B]    (t-operators) .

By commuting the factors dB  et eB we obtain the 
morphological closing :

jB = eB dB (général case),
X•B = [X ÅB) ,B]         (t-operators).
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Properties of morphological opening and closing

Increasingness:
Opening and closing are increasing as products of increasing operations.

(Anti-)extensivity:
By doing Y= dB(X), and then X = eB(Y) in adjunction dB(X) % Y ! X % eB(Y) ,

we see that:

hence eB (dB eB) % eB % (eB dB)eB&

Idempotence:
The erosion of the opening equals the erosion of the set itself. This results in the

idempotence of g B and of jB :

eB (dB eB) = eB & dB eB (dB eB) = dB eB i.e.

Finally, if eB(Y) = eB(X), then g B(X) = dB eB(X) = dB eB(Y) Í Y . Hence, g B is the
smallest inverse of erosion eB .

dB eB (X) % X % eB dB (X) eB dB eB = eB

g B g B = g B and, by duality jB jB = jB
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Amending Effects of the Opening

Geometrical interpretations:

z Î gB(X) ! zÎ By and yÎ X$B

hence

• the opened set gB(X) is the union of
the structuring elements B(x) which
are included in set X.

• In case of a t-opening, gB(X) is the
zone swept by the structuring
element when it is constrained to be
included in the set.

Structuring element

Opening

When B is a disc, the opening amends the caps, 
removes the small islands and opens isthmuses.

z Îg(X)  ! z ÎBy % X
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Effects of Closing  on Sets

Geometrical interpretations:

• The closing is the locus of the points
such that B(x) is included in the
dilate dB(X) .

• The t-closing is the complement of
the domain swept by B as it misses
set X. Note that in most of the
practical cases, B is symmetrical,i.e.
identical to B.

• When a shift affects erosion and
dilation (because of the position of
the origin), it does not acts on
openings and closings.

Structuring element

Closing

When B is a disc, the closing closes the channels,
fills completely the small lakes, and partly the gulfs.

v
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Effects of opening and closing on functions

• The opening and closing create
a simpler function than the
original. They smooth in a
nonlinear way.

• The opening (closing) removes
positive (negative) peaks that
are thinner than the structuring
element.

• The opening (closing) remains
below (above) the original
function. 806040200
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Algebraic opening and closing

The three basic properties of openings de and closings ed are now taken as axioms for the
algebraic notion of openings and closings.

Definition:

In algebra, any transformation which is:
• increasing, anti-extensive and idempotent is called an (algebraic) opening,
• increasing, extensive and idempotent is called a (algebraic) closing.

Particular cases :

A large number of techniques can be used to create algebraic opening and closing. In
practice, two of them are very useful:
1) Compute various opening (closing) and take the sup. of the opening (inf. of the

closing).
2) Use a reconstruction. process.
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Sup. of Openings , Inf. of Closings

Theorem:
• Any sup. of opening is still

an opening.
• Any inf. of closing is still a

closing.

Application example:

In order to define opening with complex selection
properties, one can use various morphological opening
and take as final result the sup. of the opening.

OriginalOpening by

Opening by

Opening by

sup.
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Goal:
• The goal of the residue by "Top hat" is to extract elements following a size or

shape criterion, mainly on numerical functions.

Definition:
• The "Top hat" transformation is the difference between the identity and a

(compatible with vertical translation) opening :

• A dual "Top hat" can be defined: the residue between a closing and the
identity:

"Top hat" Transformation

T* (f) = j(f) - f

T(f) = f - g(f)
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Properties of the "Top hats"

Idempotence:
• The "Top hat" is idempotent, if moreover the original signal is positive the

"Top hat" is anti-extensive:

T(T(f)) = T(f) f > 0 Þ T(f) < f

Geomtrically speaking, the "Top hat" reduces to zero the slow trends of the
signal.

Robustness:
• If Z stands for the set of points where the opening is smaller that f, i.e.

Z = { x : (g f)(x) < f(x) }

and if g is a positive function whose support is included in Z, then we have

T(g) = g and T (f+g) = T(f) + T(g)
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Use of  the Top-hat

Sets:
• The "Top hat" isolates the objects

that have not been eliminated by the
opening. That is, it removes objects
larger than the structuring element.

Functions:
• The "Top hat" is used to extract

contrasted components with respect
to the background. The basic "Top
hat" extracts positive components
and the dual "Top hat" the negative
ones.

• Intuitively, the "Top hat"
compensates smooth variations of
the continuous components , and
thus performs a contrast
enhancement.

806040200
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Example of  Top-hat

Negative image  
of  the  retina.

Top-hat  by  an
hexagon opening

of  size 10.

Top-hat by the sup 
of  three segments 
openings  of size 10.
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Granulometry: an intuitive approach

• Granulometry is the study of the size characteristics of the sets and of the
functions. In physics, granulometries are generally based on sieves yl of
increasing meshes l > 0. Now,

– by applying sieve l to set X, we obtain the oversieve yl(X) Í X;
– if Y is another set containing X, the Y-oversieve, for every l, is larger than 

the X-oversieve, i.e. X Í Y Þ yl(X) Í yl(Y) ;
– if we compare two different meshes l and µ such that l ³ µ, the  µ-

oversieve is larger than the l-oversieve, i.e. l ³ µ Þ yl(X) Í yµ(X) ;
– finally, by applying the largest mesh l to the µ-oversieve, we obtain again 

the l-oversieve itself, i.e. yl yµ (X) = yµ yl (X) = yl (X)

• Such a description of the physical sieving suggests to resort to openings for an
adequate formalism of the size measurements.

• But what about the relations
between size and shape?

< 
? 
>
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Granulometry: a Formal Approach

• Matheron Axiomatics defines a granulometry as a family {gl}
1) of openings,
2) depending on a positive parameter l,
3) and which decrease as l increases: l ³ µ > 0 Þ gl £ gµ .

• This third axiom is equivalent to the following semi-group law:
gl gµ = gµ gl = gsup(l,µ)

which means that the composition of two operations is equal to the stronger one.

• In practice, if we want the gl's to be morphological openings, i.e. gl(X)=XolB
(with homothetical structuring elements), then granulometry axioms are fulfilled if
and only if the structuring element B is convex.

• Similarly, the families of closings {jl , l>0} which are increasing in l generate
anti-granulometries. They satisfy the relationships jljµ = jµ jl = jsup(l,µ) .
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Granulometry and Measurements

Filter 2

Filter k

Filter n-1

Filter n

Filter 1
Measure

Measure

Measure

Measure

Measure

Opening 
size

Measure

Closing 
size

0 NN

• In practice, the granulometry is
computed by means of a bank of
filters. They can be openings or
closings.

• The filters may be constructed
with structuring elements of a
certain shape (segment, disc,
square) of successive sizes.

• At the output of each filter, an
increasing measurement is made,
for example the sets area or the
function integral. It results in a
monotonic curve, which is
normed to be a distribution
function
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Example of a Granulometry

From  left to right, closings 
by  increasing  discs.
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Section V : Geodesy

binary geodesy :

->  metrics and dilation
->  reconstruction
->  connectivity

numerical geodesy :

-> dilation
-> reconstruction 
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Geodesic Transforms

Intuitive approach:

• In number of applications, the Euclidean or the digital distances from
one point to another are not very useful because they do not take into
account possible obstacles.

• Therefore in the framework of mathematical morphology, these
distances are often replaced by the notion of a geodesic distance.

• Based on this new distance, it is possible to define a comprehensive
class of geodesic transformations, with in particular erosion and
dilation. These operations are always isotropic, since they bring into
play balls or discs only.
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Geodesic Distance

Definition:
In the set case, the geodesic distance is defined with

respect to a reference set X.

dX(x,y) = Inf. of the lengths of the paths going
from x to and included X;

dX(x,y) =+ ¥, if no such path exits.

Properties:
1) It is a generalized distance:

dX(x,y) = dX(y,x)
dX(x,y) = 0 Û x = y
dX(x,z) £ dX(x,y) + dX(y,z)

2) The geodesic distance is always larger than the
euclidean one;

3) A geodesic segment may not be unique.

X

x

z

y

y'

¥

Examples of  geodesics in R2 :

N.B. the portions of geodesics
o

included in X are line segments
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Geodesic  Discs

• The notion of geodesic path is seldom
used. By contrast, the notion of
geodesic discs appears very often:

BX(z,r) = {y, dX(z,y) £ r}

• When the radius r increases, the discs
progress as a wave front emitted from
z inside the medium X.

• For a given radius r, the discs Bx can
be viewed as a set of structuring
elements which vary from place to
place.

z

X

BX(z,r)
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• The geodesic dilation of size l of Y 
inside X is written as follows:  
dX,l(Y)  =  {xÎX ,  dX(x,Y) £ l

where  dX(x,Y) = inf{dX(x,y),  yÎY} is 
the geodesic distance from point x to set 
Y .

• As  l varies, the  dX,l form the  additive 
semi groupe 

dX,l+µ = dX,l [ dX,µ] ,

(useful for digital implementation).
• Note the difference between geodesic

and conditional dilations :

• dX,l(Y) Í (Y Å Bl) Ç X .

Geodesic Dilation

X

Y

geodesic dilation
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• When E is a digital metric space, and when 
d(x) stands for the unit ball centered at point x, 
then the unit geodesic dilation is defined by 
the relation :

dX(Y)  = d (Y) Ç X 

• The dilation of size n is then obtained by 
iteration :

• Note that the geodesic dilations are not
translation invariant.

(Binary) Digital Geodesic Dilation

dX
(n)(Y) = d(... d(d(Y) Ç X) Ç X ...) Ç X
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Geodesic Erosion for Sets

• The geodesic erosion is defined by
duality with respect to the involution
within the reference (i.e. X \ Y = X Ç
YC) :

• eX(Y) = X \ dX (X \ Y)

i.e.:
eX(Y) = e ( X È Yc ) Ç X

where e stands for Minkowski
substraction

• Note that this expression is different
from e(Y) Ç X.

X

Y

e(Y)ÇX

Y
e (Y)X

Geodesic erosion
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Binary Reconstruction

• As the grid spacing becomes finer and
finer, the digital geodesic dilation tends
towards the Euclidian one iff X is locally
finite union of disjoint compact sets.

• In such a case, the infinite dilation of Y

dX,¥ (Y) = È{ dX,l(Y) , l>0 } ,

which is a closing, turns out to be the
recontruction of those connected of set X
that contain at leat one point of set Y .
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Reconstruction Opening

• By changing our point of view, we now consider the reconstruction as an operation
which holds on the (now variable) reference X, for a given marker Y. This operation
becomes the so called reconstruction opening , acting on set X

• By playing on the choices of set X and of marker Y, one can obtain various openings
and residuals of interest. Here are a few examples of a common use:

Holes filling; Suppression of edge touching particles; 
Ultimate erosion; Connected filtering;
Geodesic SKIZ; Individual objects analysis.

opening: grec(X ; Y) = È{ dX,l(Y) , l>0 }

closing: jrec(X ; Y) = Ç{ eX,l(Y) , l>0 }
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Reconstruction Opening  and Connectivity (I)

• All reconstruction openings are suprema of point connected ones . Therefore,
they are themselve connected in the sense that they act only by suppressing
connected components of the set under study, or of the plane sections of the
function under study.

Now, the presence of a marker is not the only possible criterion: on can also 
keep or reject a grain according to its area, or its Ferret diameter, for 
example. There are no longer markers in such cases .

Connected
opening

Reference

Markers

Result
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Reconstruction Opening  and Connectivity (II)

• These situations suggest to express reconstruction openings in the following slightly 
more formal way: 

1) Call incrasing binary criterion any mapping c: P(E) ®{0,1} such that:

AÍB   Þ   c(A) Í c(B)

2) With each criterion c associate the trivial opening  gT :P(E) ® P(E) 

gT (A) = A     if    c(A) = 1 
gT (A) = Æ     if    c(A) = 0

3) We vill say that grec is the reconstruction opening  of  criterion  c when :

grec = ƒ{gT 
g

x, xÎE }

grec acts independently on the various components of the set under study, by keeping or 
removing them according as they satisfy the criterion, or not.
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Numerical Geodesic Dilations (I)

• Let f and g be two numerical functions
fromRd into R, with g £ f.

• The binary geodesic dilation of size l of
each cross section of g inside that of f at
the same level induces on g a dilation
df,l(g) .

• Equivalently, the sub-graph of df,l(g) is
the set of those points of the sub-graph of
f which are linked to that of g by

- a non descending path

- of length £ l.

numerical geodesic dilation 
of  g with respect to f

f

g

df,l(g)
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Numerical geodesic Dilations (II)

• The digital version starts from the unit 
geodesic dilation:

df (g) = inf (g "B , f )

which is iterated  n times to give that of 
size n

df ,n(g) = df 
(n)(g) = df (df .... (df (g))). 

• The Euclidean and digital erosions derive
from the corresponding dilations by the
following duality

ef(g) = m - df (m - g) ,

which is différent from the binary duality.

numerical geodesic erosion
of  f   with respect to  g :

f

g

ef,l(g)
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Numerical Recontruction

• The reconstruction opening of f accoding to 
g is the supremum of the geodesic dilations 
of g inside f, this sup being considered as a 
function of f:

grec(f ; g) = \/{ df,l(g) , l>0 }

The dual closing for the negative is 

jrec(f ; g) =  m - grec(m- f ; m- g) 

• Three cases are basic for the applications :
- swamping, or reconstruction of a

function by imposing markers for the
maxima;

- reconstruction from an erosion ;
- contrast opening ,which extracts and

filters the maxima.

Numerical Reconstruction
of  g inside f :

g

grec(f ; g)

f
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Section VI : Applications of  Geodesy

• Binary Geodesy :

-> edge corrections
-> holes filling
-> individual analysis
-> particles extremities
-> geodesic skiz

• Numerical Geodesy :

-> binary labelling
-> swamping
-> contrast opening
-> extrema
- > connected filters 
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Binary Filtering by erosion-recontruction

• Firstly, the erosion X$Bl suppresses the connected components of X that cannot 
contain a disc of radius l.

• Then the opening grec(X ; Y) of marker Y = X$Bl rebuilts all the others.
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Holes Filling

initial image
X

A = part of the edge 
that hits  XC

reconstruction 
of  A inside  XC
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Removal of the grains hitting the edges

• Let Z  be the set of the edges , and  X  be the grains under study ;

• Set Z€X  is reconstructed inside set X ;

• the set difference between X and the reconstruction provides the internal particles.

X Z
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Individual Analysis of Particles

• Algorithm :

While set X is not empty do {

~   p := first point of the video scan;

~   Y := connected component of 
X  reconstructed from p;

~    Processing of Y (and various 
measurments) ;

~    X :=   X  \ Y
}   

Particules à extraire individuellement:
X

Y new X
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Extremities of a  particle

• Particle X is supposed to be simply connected  (i.e. connected and without holes) ;
• An internal centroid is provided  (for ex. by means of thinning Dthin) ;
• The extremities of particle X are then defined as the geodesic  ultimate erosion, inside 

X, of the set Y equal to X minus its centroid.
In other words, if  en = eX,n(Y) stands for the geodesic erosion of size n of Y 

inside X,  then
extremities = # [en \ grec (en ; en + 1) , nÎN]
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Reconstruction of a Function from Markers

Goal:
• Remove from a function the useless

maxima (or minima).

Algorithm:
• The "marker" is a bi-valued (0,m) function

identifying the peaks of interest.
• The reconstruction process creates a

function equal to the original one in the
zones of interest and eliminates maxima
which are not marked.

• The result is the largest function £ f and
admitting maxima at the marked points
only. It is called the swamping of f (by
opening).

f
Markers: 

m

Rec.

Swamping  of  f  by markers m
( by opening ) 
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Reconstruction Opening by Erosion

Goal:
In the multidimensional case, the morphological opening modifies the various element
contours. The goal of this transform is to efficiently and precisely reconstruct the contours
of the objects which have not been totally removed by the filtering process.

Algorithm:
• This transformation can

be expressed by means
of reconstruction:

- the mask is the original
signal itself,

- the reconstruction input
is an erosion of the
mask.

grec(f,eB(f)) = df
(n)(eB(f))Ú

n

Structuring 
element

Er
os

io
n

D
ila

tio
n

R
ec

on
st

ru
ct

io
n

Original

Morphological opening

Opening by reconstruction

:B
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Reconstruction Opening by Dynamic

Algorithm :
- Shift down by constant c the

initial function f ;
- Rebuilt f from function f - c, i.e.

- Note that the associated top-hat
extracts all peaks of dynamic ³ c

Goal :
Both morphological and reconstruction openings reduce the functions according to size
criteria which work on their cross sections. In opening by dynamic, the criteron holds
on gray tones contrast.

C

Original

Résultat

grec(f, f-c) = df
(n)(f-c)Ú 

n
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Maxima and Opening by Dynamic

• The maxima of a numerical function on a space E are the connected components of E 
where f is constant and surrounded by lower values.

• Therefore they are given by the residues of the opening by dynamic, for a shift c = 1.

• More generally, the residuals asssociated with a shift c extract the maxima surrounded 
by a descending zone deeper than c. They are called Extended Maxima
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Definitions :
• The flat zones of a function f over a space E are the largest connected components of E

where f est constant.
• An operator y on functions is said to be connected when the flat zones of y(f) contain

thoses of f.

Properties :
Every binary increasing operator by reconstruction generates, via the cross sections, a
connected operator on the functions (numerical ou multivalued ones).

• The properties of the binary operations such as to be a strong filter, to form semi-groups
etc.. are systematically transmitted to the connected operators induced on the numerical
functions via the cross sections .

Flat Zones and Connected Operators
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Plan of section VII

Construction of primitives family

Residues with families of primitives

Ultimate erosion Skeleton Conditional bisector
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Example of family (I):
Homogeneous family

• This is the most useful case in practice. It assumes that all elementary
erosions are equal. That is:

• As an example, the structuring elements are homothetics of symmetrical sets
(disk, square, polygon):

"i,j  hi =  hj = h
Þ     ei = (h)i

Successive 
dilations

eh
h

h

h

e

e

e

1 1
2 2

3

4

3

4

eh
h

h

h

e

e

e

1 1

2 2

3

4

3

4

eh
h

h

h

e

e

e

1 1

2 2

3

4

3

4



J. Serra,  Ph. Salembier, S. Beucher                                                                               Ecole des Mines de Paris (1996) Cours Morpho  I. 70

Example of families (II):
Nonhomogeneous families

• Sometimes, it is necessary to use a finer analysis tool, that is a slower size
progression of the family. In this case, the elementary erosions can vary from
one order to another one.

• Example: Family of erosions with polygons such that, for each direction, the
extension of each polygon side is increasing.

Successive 
dilations

h

h

h

1

2

3

4

e

e

e

e

1

2

3

4

h

h

h
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6
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e

e

5

6
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Ultimate erosion (I)

Intuitive description:
The goal is to "mark" sets. To this end,
successive erosions are performed and, at each
step, the total disappearance of the sets is
checked. The marker is the result of the last
erosion which is not empty.

In order to check if a given set is going to
disappear totally in the next step, an erosion
followed by a geodesic reconstruction, that is
an opening by reconstruction, is performed.
Two cases may occur:

1) The erosion has removed the set: The
reconstruction result is empty.

2) The erosion has not removed the set: The
reconstruction result is the initial set.

Erosion 1 Erosion 2 Erosion 3

Ultimate Erosion

ResidueResidueResidue

opening 
by reconst.

Original

opening 
by reconst.

opening 
by reconst.
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Ultimate erosion (II)

Definition:
• In the case of digital space, the ultimate erosion is simply the residue

between the families of erosion and of opening by reconstruction of these
erosions:

Properties:
• The ultimate erosion is anti-extensive and the Ui are disjoint.
• U(X) is thin, in the sense that its erosion by Èhi is empty.
• When the family is homogeneous, the ultimate erosion is idempotent.
• If a component Ui is dilated with a structuring element i, the result is a

maximal ball: It is included in the original set and and there exist no other
larger structuring element in the family allowing the creation of a dilation of
Ui which is included in the original set.

U (X) = Â{ei}, {grec(ei,ei+1)}(X) = Âei, grec(ei,ei+1)(X)È
i

 = U i(X)È
i

Residue between {ei} and {grec(ei,ei+1)}
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Maximal balls

• The study of ultimate erosion has
introduced the notion of maximal
ball. Its formal definition is the
following:

Definition:
• Let us call ball of size n and of

center x the dilation of the point
x for the structuring element n of
the family:

• A ball of size n and center x is
maximal with respect to the set
X, if there exist no other index k
and no other center x' such that:
dn(x) Ì dk(x')  Ì X,   k>n

dn(x)

If they are symmetrical, the maximal balls
identify points which are equidistant from at
least two boundary points.

X Maximal ball

center x

X

Maximal ball of center x

x x'
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Skeleton: definition

• The ultimate erosion is a set of centers of maximal balls. The set of all centers of
maximal balls defines the skeleton.

Definition:
• The skeleton of a set X in the sense of the family {dn} is the set of centers x of

maximal balls

Note: If the balls are symmetrical, the skeleton represents approximately the medial
axis of the set.
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Skeleton: Construction
Structuring element:

Erosion 0 Erosion 1 Erosion 2 Erosion 3 Erosion 4

Opening Opening Opening Opening Opening

Residue: 
Maximal ball 1

Residue: 
Maximal ball 2

Residue: 
Maximal ball 3

Residue: 
Maximal ball 4

Residue: 
Maximal ball 5 
           = 
Ultimate erosion
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Skeleton: Algorithm

• The algorithm allowing the computation of the skeleton is exactly the same as
the one for the ultimate erosion replacing the opening by reconstruction by a
unitary opening:

Algorithm:
• In the case of homogeneous family, the skeleton is the residue the families of

erosion and of unitary opening of the erosions:

• In the case of nonhomogeneous family, the skeleton is defined as:

Note: The function which has the skeleton as support and whose grey level values
are the size of the maximal balls is called the quench function.

S(X) = Â{ei}, {gei}(X) = Âei, gei(X)È
i

 = Si(X)È
i

Residue between {ei} and {gei}

Residue between {ei} and {gi+1ei}
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Skeleton: Properties (I)

Size:
• The skeleton is thin in the sense that its erosion by Èhi (the elementary erosion

in the homogeneous case) is empty.

Anti-extensive and idempotent:
• X É S(X), and
• When the family is homogeneous, S(S(X)) = S(X)

Preservation of the information:
• The set X and its openings can be computed directly from the skeleton and its

quench function:

=> The transformation is invertible and leads to an other representation of the
lattice.

gj(X) = di(Si(X))È
i ³ j

X = di(Si(X))È
i ³ 0
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Inversion of the skeleton

Skeleton:

Max. ball:5 Max. ball:4 Max. ball:3 Max ball:2 Max. ball:1

Dilation Dilation Dilation Dilation

Set
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Skeleton: Properties(II)

Discontinuity:
• The skeleton transformation is not continuous. Therefore, a small variation of the

original set may result in very different skeletons:

=> To solve this problem, smoother versions of the skeleton have been introduced:
Conditional bisector.

Connectivity:
• Although the connectivity is preserved in the continuous case, this property disappears

in the digital case. If the connectivity preservation is of importance, other techniques
based on "hit or miss" transforms are used.
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Skeleton by Influence Zone: SKIZ

Goal:
• The zone of influence of a component X is the set of points that are closer to X than to

any other component.
• The SKIZ the boundary of these zones of influence.

Construction:
• In the digital case, the SKIZ is constructed in two steps:

1) "Thinning" of the background (with L in the hexagonal case)
2) Pruning of the "thinning" result (with E in the hexagonal case)

Skiz

Influence zone
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Geodesic SKIZ

• The geodesic zone of influence of
a component K in a reference R,
IZ (K ), is formed by all points
of R which are at a geodesic
distance to K smaller than to any
other component K , j ¹ i.

• The geodesic SKIZ is formed by
the boundaries of the the
geodesic influence zones of the
components inside the reference.

i

i
j

Note: The geodesic distance of a point to a set is the smallest geodesic distances 
of the point to all points of the set.

R      i

SKIZ  (K)R

K3

K2K 1

IZ  (K )R  1

R
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Topographic interpretation of the "watershed"

• The name of watershed comes from
a topographical analogy where the
image is considered as a surface
with the grey level values defining
the altitude.

• Each local minimum is associated
to a basin. If it is raining on the
surface, the minimum associated to
a basin is the point that would
receive the water coming from the
point of the basin.

Grey level 
surface

Minima

Basins
Watershed
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Minimum and associated basin

• Threshold at level h: T (f) = { x : f(x) Š h}
• The basin points associated to a minimum M, C(M), are the surface points

that would send water to that minimum. Let us call C (M) these points that
are at a level (altitude) lower than h:

C (M) = { x Î C(M) : f(x) Š h } = C(M) Ç T (f)
• Minimum of level h, M , is a connected component of constant value which

has only higher neighbors.

• Min (f) is the set of all minima at level h.

h

h

h

h

h

h

Mh
 g  (M) = Ž(M) \ M+

"  x Î g  (M),  f(x) > h+
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Construction of "watershed" by flooding (I)

• Suppose that holes are made in each local minimum and that the surface is flooded from
these holes. Progressively, the water level will increase.

• In order to prevent the merging of water coming from two different holes, a dam is built at
each contact point.

• At the end, the dams are surrounded with water. They constitute the watersheds.

Minima

Dam

Water level
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Construction of "watershed" by flooding (II)

Flooding algorithm:

• Initial set: X = T (f)
• Threshold at level h +1:

For a connected component Y of T (f)
there are three possible inclusions:

1 Y Ç X = Ø, Y is a new minimum
2 Y Ç X ¹ Ø and connected, Y are points of

the same basin C ( Y Ç X ) = Y
3 Y Ç X ¹ Ø and not connected, Y has k

different minima ( Z , … , Z ). The best
choice for the basins are given by their
geodesic influence zones:

C (Z ) = IZ (Z )

h min h min

h min +1

h min +1 h min

h min +1

1                   k

i            Y     i

min Y

Y

X h mín

Y

Z 1
Z 2

SKIZ  (Z), Z={Z }iY
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Construction of "watershed" by flooding (III)

Flooding algorithm (cont):
• Initialization: X = Min (f) È IZ (X )

Iteration:

1) X = T (f)

2) X = Min (f) È IZ (X )

• The set of basins of the image f are given by X
• The set of "watershed" is is complement: X h max

h min +1 h min +1                   Thmin +1(f)      h min 

h min h min

h +1               h +1                    Th+1(f)       h

C
h max
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Applications of the "watershed"

In topography

Study of the draining of a surface by the use of digital models

In signal processing

• Contour detection:
The contour of a signal can be viewed 
as the "watershed" of its gradient.

• Segmentation

f

grad watersheds
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section IX : SKIZ and Watershed

Watershed

Distance function

Euclidean and Geodesic SKIZ

Definition and  properties Algorithms Swamping
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Distance function (I)

Definition:
• The distance function is an intermediate step between sets and functions.
• When a distance has been defined, It is possible to associate with each set X, its

subset Xl composed of all the points which are at a distance larger than l from
its boundary.

• When l increases, the subsets are included within each other (and parallel in the
euclidean case). They can be considered as the horizontal thresholding of a
function whose grey level is l at x if x is at a distance l from the boundary. This
function is called Distance Function.

1 2 3 4

X
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Distance Function 
(II)

Properties:
• If the distance is characterized by the sets of disks dl of size l, the subsets

Xl can be considered as the result of the erosions of X by the disks. More
precisely:

• Conversely, each family of symmetrical dilations which fulfills these three
rules generates a distance d which is characterized by:

where is the disk of center y and radius l.dl(y)
d(x,y) = Inf {x Î dl(y)}= Inf {y Î dl(x)}

3)  I = Ù {dl,  l>0},      I:Identity

2)  dldµ £ dl+µ,     l,µ³ 0

1)  l ³ µ Þ dl ³ dµ
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Distance function (III): an Example

Set  XDistance to X Distance to X c

In the close loops of crest lines, the pixels are equidistant to two  (or more) holes, in the left cae,
and to two (or more) particles in the right case.They delineate the zones of influence of the objects.
This nice property suggests to study them specifically.
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SKIZ, or Skeleton by Influence Zone

Goal:
• In a metric space, the zone of influence of a component X is the set of points that are

closer to X than to any other component.
• The SKIZ the boundary of these zones of influence.

Construction:
• In the digital case, the SKIZ is constructed in two steps:

1) "Thinning" of the background (with L in the hexagonal case)
2) Pruning of the "thinning" result (with E in the hexagonal case)

Skiz

Influence zone
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Geodesic SKIZ

• Let Y = #{ Yi , iÎI } be a set of I compact
connected components included in a mask X .

• The geodesic zone of influence of a component
Yi in X, is formed by all points of X whose
geodesic distance to Yi is smaller than to any
other component of Y i.e.

zi (Yi \ X) = {aÎX , "k ¹ i, dX(a, Yj) £dX(a,Yk)}

where the geodesic distance from point a to set
Y is the inf of the geodesic distances from a to
all points of Y.

• The geodesic SKIZ is then the boundaries
between the geodesic zones of influence.

SKIZ  (Y)

Y3

Y2
K1

zi (Y1 )

X

Example of  geodesic SKIZ
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The Two Problems of Segmentation (I)

• When one wants to segment a set, the first
question which arises is :

" into how many pieces ? " (in
case of figure 1, into 6 or 7 particles?)

• One can decide and indicate, manually, the
supposed locations of the centers.

• Alternatively, one can trust in a marking
technique. However, the results risk to vary
with the method (here, between 6 and 7).

• In all cases, this first step is a choice.

Figure 1 :

A set and its
ultimate erosion

Ultimate erosion 
after filtering 
of the set.
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The Two Problems of Segmentation (II)

• Given a certain choice of markers, (here, the 
conditional bisector) le segmentation lines 
may be optimised :

– A coarse expression is obtained by
taking the exoskeleton of the markers
(the shape of the set is then just ignored)

– One can partly take this shape into
account by dilating each marker by a
disc equal to the difference between
number of steps for the ultimate marker
and that for the current one;

– Following this idea, the finest procedure
consists in calculating the geodesic skiz
of eroded n° i inside eroded n° i-1, as i
varies from the ultimate eroded to zero,
and taking the union of the resulting
skiz's.

Exoskeleton of
the  markers.

Successive
geodesic skiz's.
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Fine Segmentation fine Distance Function

• The successive eroded versions of a set
X are nothing but the horizontal
sections of its distance function ;

• therefore the finer previous
segmentation, by means of geodesic
skiz's, comes back to build up the
watershed lines of this distance
function (at least when the les markers
are the ultimate erosions).

• By duality, they also appear to be the
valleys lines on the inverse function. Ultimate erosions

Watershed lines

Minima
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Watershed Lines for Numerical Functions

• Indeed, the method developed for
the set case via the distance
functions applies as well to any
numerical image. The analogy
between gray levels and altitudes
still justifies the topographical
terms of bassins and
watersheds.

• However, it is less matter of rain
water running down to the minima
than, on the opposite, of water
which springs from the minima .

surface of
the function

Minima

Bassins
Watershed lines

topographical patterns
of a numerical image
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Construction of  the Watersheds by Flooding (I)

• Suppose that holes are made in each local minimum and that the surface is flooded from
these holes. Progressively, the water level will increase.

• In order to prevent the merging of water coming from two different holes, a dam is built at
each contact point.

• At the end, the dams are surrounded with water. They constitute the watersheds.

Minima

Dam in construction

Water level
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Construction of  the Watersheds by Flooding (II)

Flooding algorithm :

• Let m be the minimum value of function f. Put:
X0 = { x: f(x) = m},

and Xk = { x: f(x) £ m+k } with 1 £ k £ max f

• Denote by Y1 the geodesic zones of influence of X0
inside X1. Three types of connected components of
X1 have to be distinguished :
– thoses, X1,1  that do not contain points of X0: 

then they do not belong to  Y1 

– thoses, X1,2 that contain a unique c.c. of X0 : 
then they fully belong to  Y1 

– thoses, X1,3 that contain several c.c. of X0 : Y1
recovers then X1,3 minus the branches of its 
geodesic skiz.

X1.1

c.c. of X0

X1.3

X1.2

c.c. of X0

skiz ( X0 \ X1 )

evolution of the flooding
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Construction of  the Watersheds by Flooding (III)

• Since the X1,1 's are minima  which appear at level 1, we have to incorporate them to 
the flooding proccess. Thus we replace 

X1       by    Y1#X1,1

• ...and we iterate. The geodesic zones of influence 
– Y2 of      Y1#X1,1 inside  X 2 are clculated ;
– They provide markers  Y2#X2,1 ;   etc...

• The  proccess ends when level k = max f is reached. Then one has :

Ymax f =   union of the  bassins;

[ Ymax f ]c  =  Watershed lines.
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Example of Watershed by Flooding (I)

Initial image. Minima (1), and 
next level (2).

2

1

Geodesic skiz of 
(1) into (2)

(in white lines).



J. Serra,  Ph. Salembier, S. Beucher                                                                               Ecole des Mines de Paris (1996) Cours Morpho  I. 
102

Example of Watershed by Flooding (II)

Level 2, minus 
the first skiz , 
and level 3.

Second skiz
(note that it prolongates 

the first one).

Final watershed
(The result is significant

in spite of the small 
number of gray levels).
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Minima selection by Filtering

• As a general rule, images have too many
minima, and a careless computation of
theirs watersheds often leads to a
disastrous over-segmentation.

• In order to obtain significant minima,
one can begin with filtering the images:

– either "horizontally" by plane
alternating filters, with or without
reconstruction ;

– or "vertically" by closings jrec(f;f+h)
of dynamic h. In particular, for h =1
all the minima are extracted.

• When dealing with maxima, one takes 
grec(f;f-h) .

" horizontal"
filtering

"vertical"
filtering
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Example of Minima Filtering

(a) initial image :
electrophoresis  gel.

(b)  minima of 
the initial image.

(c) minima of the image 
after alternating filtering
of (a) by the unit  hexagon.

N.B. There is no viual difference between (a) and its filtered version . 
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Changing the Minima : Swamping

• The  markers may not coincide with the 
minima of f. In that case, they act on f via 
the swamping transformation.

• Goal : Given f ³ 0, and a set M of 
markers, find the inf of the  functions 

– whose minima are exclusively the 
connected components of M;

– which are zero on M and ³ f on Mc .

• Way: Associate with M function g  such 
that    g(x) = 0  if xÎM  ;   g(x) = max     
if xÏM. Then, function  jrec(f;g) provides 
the required inf . It is called Swamping of 
f by M.


