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What is Algorithm Analysis?
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I Measure resource requirements: how does the
amount of time and space an algorithm uses scale with
increasing input size?

I How do we put this notion on a concrete footing?
I What does it mean for one function to grow

faster or slower than another?
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I Measure resource requirements: how does the
amount of time and space an algorithm uses scale with
increasing input size?

I How do we put this notion on a concrete footing?
I What does it mean for one function to grow

faster or slower than another?

Develop algorithms that provably run quickly and use low
amounts of space.



Worst-case Running Time

I We will measure worst-case running time of an algorithm.

I Bound the largest possible running time the algorithm over all
inputs of size n, as a function of n.

I Why worst-case? Why not average-case or on random inputs?
I Input size = number of elements in the input. Values in the input

do not matter.
I Assume all elementary operations take unit time: assignment,

arithmetic on a fixed-size number, comparisons, array lookup,
following a pointer, etc.
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Polynomial Time

I Brute force algorithm: Check every possible solution .

I What is a brute force algorithm for sorting: given n numbers,
permute them so that they appear in increasing order?

I Try all possible n! permutations of the numbers.
I For each permutation, check if it is sorted.
I Running time is nn!. Unacceptable in practice!

I Desirable scaling property: when the input size doubles, the
algorithm should only slow down by some constant factor c .

I An algorithm has a polynomial running time if there exist
constants c > 0 and d > 0 such that on every input of size n, the
running time of the algorithm is bounded by cnd steps.

An algorithm is efficient if it has a polynomial running time.
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Exercises
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Solve the exercises related to computational cost.

The idea is to compute the number of operations of each part of
the code.
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T (n) =

{
T (n − 1) + 1, if n > 1
0, otherwise

T (n) =

T (n − 1) + 1
T (n − 1) = T (n − 2) + 1

...
...

T (n − i) = T (n − i − 1) + 1
...

...
T (2) = T (1) + 1
T (1) = 0
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Upper and Lower Bounds

Asymptotic lower bound : A function f (n) is Ω(g(n)) if there exist
constants c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have
f (n) ≥ cg(n).

Asymptotic upper bound : A function f (n) is O(g(n)) if there exist
constants c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have
f (n) ≤ cg(n).

Asymptotic tight bound : A function f (n) is Θ(g(n)) if f (n) is
O(g(n)) and f (n) is Ω(g(n)).

I In these definitions, c is a constant independent of n.
I Abuse of notation: say g(n) = O(f (n)), g(n) = Ω(f (n)),

g(n) = Θ(f (n)).
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Properties of Asymptotic Growth Rates

Transitivity

I If f = O(g) and g = O(h), then f = O(h).
I If f = Ω(g) and g = Ω(h), then f = Ω(h).
I If f = Θ(g) and g = Θ(h), then f = Θ(h).

Additivity

I If f = O(h) and g = O(h), then f + g = O(h).
I Similar statements hold for lower and tight bounds.

I If k is a constant and there are k functions fi = O(h), 1 ≤ i ≤ k ,
then f1 + f2 + . . .+ fk = O(h).

I If f = O(g), then f + g = Θ(g).

Prove that the properties for O are true!!!
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Examples

I f (n) = pn2 + qn + r is

θ(n2). Can ignore lower order terms.
I Is f (n) = pn2 + qn + r = O(n3)?
I f (n) =

∑
0≤i≤d ain

i = O(nd), if d > 0 is an integer constant and
ad > 0. Definition of polynomial time

I Is an algorithm with running time O(n1.59) a polynomial-time
algorithm?

I O(loga n) = O(logb n) for any pair of constants a, b > 1.
I For every x > 0, log n = O(nx).
I For every r > 1 and every d > 0, nd = O(rn).
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Linear Time

I Running time is at most a constant factor times the size of the
input.

I Finding the minimum, merging two sorted lists.
I Sub-linear time. Binary search in a sorted array of n numbers takes

O(log n) time.
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O(n log n) Time

I Any algorithm where the costliest step is sorting.
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Quadratic Time

I Enumerate all pairs of elements.

I Given a set of n points in the plane, find the pair that are the
closest. Surprising fact: can solve this problem in O(n log n) time
later in the semester.
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O(nk) Time

I Does a graph have an independent set of size k , where k is a
constant, i.e. there are k nodes such that no two are joined by an
edge?

I Algorithm: For each subset S of k nodes, check if S is an
independent set. If the answer is yes, report it.

I Running time is O(k2(n
k

)
) = O(nk).
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Beyond Polynomial Time

I What is the largest size of an independent set in a graph with n
nodes?

I Algorithm: For each 1 ≤ i ≤ n, check if the graph has an
independent size of size i . Output largest independent set found.

I What is the running time? O(n22n).
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