

Algorithm design and analysis

– Computational cost —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Algorithm design and analysis — Computational Tractability —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow

faster or slower than another?

- Measure resource requirements: how does the amount of time and space an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow

faster or slower than another?

Develop algorithms that provably run quickly and use low amounts of space.

- ► We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

- ► We will measure worst-case running time of an algorithm.
- ▶ Bound the largest possible running time the algorithm over all inputs of size *n*, as a function of *n*.
- ▶ Why worst-case? Why not average-case or on random inputs?

- ► We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- ▶ Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input. Values in the input do not matter.

- ► We will measure worst-case running time of an algorithm.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- ▶ Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input. Values in the input do not matter.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.

► Brute force algorithm: Check every possible solution .

- ► Brute force algorithm: Check every possible solution .
- ► What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?

- ► Brute force algorithm: Check every possible solution .
- ► What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.

- ► Brute force algorithm: Check every possible solution .
- ► What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - ▶ Running time is *nn*!. Unacceptable in practice!

- ► Brute force algorithm: Check every possible solution .
- ► What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - ▶ Running time is *nn*!. Unacceptable in practice!
- ► Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor *c*.

- Brute force algorithm: Check every possible solution.
- ► What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - ▶ Running time is *nn*!. Unacceptable in practice!
- ► Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor *c*.
- ► An algorithm has a polynomial running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

- ► Brute force algorithm: Check every possible solution .
- ► What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - ► For each permutation, check if it is sorted.
 - ▶ Running time is *nn*!. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor c.
- ► An algorithm has a polynomial running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

An algorithm is efficient if it has a polynomial running time.

Algorithm design and analysis

— Exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Solve the exercises related to computational cost.

The idea is to compute the number of operations of each part of the code.

Algorithm design and analysis

— Recurrences —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

$$T(n) = \begin{cases} T(n-1)+1, & \text{if } n > 1 \\ 0, & \text{otherwise} \end{cases}$$

T(n) =

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n) = T(n-1) + 1$$

$$T(n-1) = T(n-2) + 1$$

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$
$$T(n) = T(n-1) + 1$$
$$T(n-1) = T(n-2) + 1$$
$$\vdots \qquad \vdots$$

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n) = T(n-1) + 1$$

$$T(n-1) = T(n-2) + 1$$

$$\vdots \\ T(n-i) = T(n-i-1) + 1$$

> 1

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n) = T(n-1) + 1$$

$$T(n-1) = T(n-2) + 1$$

$$\vdots \\ T(n-i) = T(n-i-1) + 1$$

$$\vdots$$

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n) = T(n-1) + 1$$

$$T(n-1) = T(n-2) + 1$$

$$\vdots$$

$$T(n-i) = T(n-i-1) + 1$$

$$\vdots$$

$$T(2) = T(1) + 1$$

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n) = T(n-1) + 1$$

$$T(n-1) = T(n-2) + 1$$

$$\vdots$$

$$T(n-i) = T(n-i-1) + 1$$

$$\vdots$$

$$T(2) = T(1) + 1$$

$$T(1) = 0$$

$$T(n) = \begin{cases} T(n-1) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n-0) = T(n-1) + 1$$

$$T(n-1) = T(n-2) + 1$$

$$\vdots & \vdots$$

$$T(n-1) = T(n-i-1) + 1$$

$$\vdots & \vdots$$

$$T(2) = T(1) + 1$$

$$T(2) = 0$$

$$T(n) = 1 + 1 + \dots + 1 + 0$$

		$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	1) + 1,	if n > 1 otherwise
T(n-0) T(n-1)	=	$\frac{T(n-1)}{T(n-2)}$	$^{+1}_{+1}$	What's the range for
: <u>T(n-i)</u>	=	: <u>T(n-i-1)</u>	+ 1	
: I(2) T(1)	=		$+1 \\ 0$	
T(n)	=	$\underbrace{1+1+\dots+1}_?$	+ 0	

		$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	1) + 1,	if n > 1 otherwise
T(n - 0) T(n - 1)	=	$\frac{T(n-1)}{T(n-2)}$	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: <u>T(n-i)</u>	=	: <u>T(n-i-1)</u>	+ 1	$i \in [0,x]$
: T(2) T(1)	=	: [(1)	$^{+1}_{0}$	
<u> </u>	=	$\underbrace{1+1+\dots+1}_?$	+ 0	

		$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	+ 1,	if n > 1 otherwise
T(n – 0) T(n – 1)	=	$\frac{T(n-1)}{T(n-2)} +$	- 1 - 1	What's the range for <i>i</i> ?
: <u>T(n-i)</u>	=	$\frac{1}{T(n-i-1)} +$	- 1	$i \in [0, x]$
: T(2) T(1)	=	: <i>I</i> (1) +	- 1 0	$ \begin{array}{rcl} \downarrow \\ n-i &=& 2\\ \vdots & & & 2 \end{array} $
T(n)	=	$\underbrace{1+1+\dots+1}_? +$	- 0	I = II - Z

	7	$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	1) + 1,	if n > 1 otherwise
T(n – 0) T(n – 1)	=	$\frac{T(n-1)}{T(n-2)}$	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: <u>T(n-i)</u>	=	: <u>T(n-i-1)</u>	+ 1	<i>i</i> ∈ [0, <i>x</i>]
: T(2) T(1)	=	Ţ(t)	$^{+1}_{0}$	$ \begin{array}{rcl} \downarrow \\ n-i &=& 2\\ \vdots & & & 2 \end{array} $
<i>T</i> (<i>n</i>)	=	$\underbrace{\frac{1+1+\cdots+1}{?}}$	+ 0	$i = n - 2$ \downarrow
				So, <i>i</i> ∈ [0, <i>n</i> − 2]

		$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	1) + 1,	if n > 1 otherwise
<i>T</i> (<i>n</i> −0) <i>T</i> (<i>n</i> −1)	=	T(n-1) T(n-2)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: T(n-1)	=	: <u>T(n-i-1)</u>	+ 1	$i \in [0, x]$
I(2) I(1)	=	<u>T(1)</u>	$^{+1}_{0}$	$ \begin{array}{rcl} \downarrow \\ n-i &= 2 \\ i &= n-2 \end{array} $
T(n) T(n)	=	$\underbrace{\frac{1+1+\dots+1}{\sum_{i=0}^{n-2}1}}_{i=0}$	+ 0 + 0	↓ ↓
				So, <i>i</i> ∈ [0, <i>n</i> − 2]

		$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	1) + 1,	if n > 1 otherwise
T(n – 0) T(n – 1)	=	$\frac{T(n-1)}{T(n-2)}$	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: <u>T(n-i)</u>	=	: <u>T(n-i-1)</u>	+ 1	$i \in [0, x]$
: T(2) T(1)	=	: <i>T(</i> t)	+1	$ \downarrow n-i = 2 $
T(n)	=	$\underbrace{1+1+\dots+1}$	+ 0	i = n-2
T(n)	=	$\sum_{i=0}^{n-2} 1$	+ 0	$\downarrow \qquad \qquad$
T(n)	=	n - 2 - 0 + 1	+ 0	50, 1 ([0, 11 2]

		$T(n) = \begin{cases} T(n-1) \\ 0, \end{cases}$	1) + 1,	if n > 1 otherwise
T(n - 0) T(n - 1)	=	<u>T(n-1)</u> <u>T(n-2)</u>	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: <u>T(n-1)</u> :	=	: <u>T(n-i=1)</u> :	+ 1	$i \in [0, x]$
	=	: <i>I</i> (1)	+1 0 + 0	n-i = 2 i = n-2
T (n) T(n)	=	$\underbrace{\frac{1+1+\dots+1}{\sum_{i=0}^{n-2}1}}_{i=0}$	+ 0 + 0	↓
T(n) T(n)	=	$n-2-0+1\\n-1$	+ 0	So, $i \in [0, n-2]$

Silvio Guimarães
$$T(n) = \begin{cases} T(n/2) + 1, & \text{if } n > 1 \\ 0, & \text{otherwise} \end{cases}$$

T(n) =

$$T(n) = \begin{cases} T(n/2) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$

$$T(n) = T(n/2) + 1$$

$$T(n/2) = T(n/4) + 1$$

		$T(n) = \begin{cases} T(n) \\ 0, \end{cases}$	n/2) + 1,	if n > 1 otherwise
T(n) T(n/2)	=	T(n/2) T(n/4)	$^{+1}_{+1}$	
:		:		

$$T(n) = \begin{cases} T(n/2) + 1, & \text{if } n > 1\\ 0, & \text{otherwise} \end{cases}$$
$$T(n) = T(n/2) + 1 \\ T(n/2) = T(n/4) + 1 \\ \vdots & \vdots \\ T(n/2^{i}) = T(n/2^{i+1}) + 1 \end{cases}$$

1

		$T(n) = \begin{cases} T(n) \\ 0, \end{cases}$	/2) + 1,	if n > 1 otherwise
T(n) T(n/2)	=	T(n/2) T(n/4)	$^{+1}_{+1}$	
$T(n/2^i)$	=	$T(n/2^{i+1})$	+ 1	

		$T(n) = \begin{cases} T(n) \\ 0, \end{cases}$	/2) + 1,	if n > 1 otherwise
T(n) T(n/2)	=	T(n/2) T(n/4)	$^{+1}_{+1}$	
$\frac{1}{T(n/2^i)}$	=	\vdots $T(n/2^{i+1})$	+ 1	
: T(2)	=	: T(1)	+ 1	

		$T(n) = \begin{cases} T(n) \\ 0, \end{cases}$	9/2) + 1,	if n > 1 otherwise
T(n) T(n/2)	=	T(n/2) T(n/4)	$^{+1}_{+1}$	
$\frac{1}{T(n/2^i)}$	=	\vdots $T(n/2^{i+1})$	+ 1	
: T(2) T(1)	=	: T(1)	$+ 1 \\ 0$	

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	2) + 1,	if n > 1 otherwise
T(n/2 ⁰) <u>T(n/2¹)</u>	=	$I(n/2^{1})$ $I(n/2^{2})$	$^{+1}_{+1}$	What's the range for <i>i</i>
: I(n/2')	=	: <u>T(n/2ⁱ⁺¹)</u> :	+ 1	
: [(2) [(1)	=	: <i>I</i> (1)	$+ 1 \\ 0$	
T(n)	=	$\underbrace{1+1+\cdots+1}_?$	+ 0	

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	2) + 1,	if n > 1 otherwise
$T(n/2^0)$ $I(n/2^1)$	=	<u>I(n/2¹)</u> I(n/2 ²)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: I (n/2ⁱ)	=	: <u>T(n/2ⁱ⁺¹)</u>	+ 1	<i>i</i> ∈ [0, <i>x</i>]
: I(2) I(1)	=	<u> </u>	$^{+1}_{0}$	
<i>T</i> (<i>n</i>)	=	$\underbrace{1+1+\dots+1}_?$	+ 0	

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	2) + 1,	if n > 1 otherwise
$T(n/2^0)$ $I(n/2^1)$	=	I (n/2¹) I (n/2²)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: I (n/2ⁱ) :	=	: <u>T(n/2ⁱ⁺¹)</u> :	+1	$i \in [0, x]$ \Downarrow
$\frac{T(2)}{T(1)}$	=	$\underbrace{\frac{\mathcal{I}(1)}{\mathcal{I}(1)}}_{2}$	$+1 \\ 0 \\ +0$	$n/2^{i} = 2$ $2^{i+1} = n$ $i = \log_{2} n - 1$

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	2) + 1,	if n > 1 otherwise
$T(n/2^0)$ $I(n/2^1)$	=	I(n/2 ¹) I(n/2 ²)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: I (n/2ⁱ) :	=	: <u>T(n/2ⁱ⁺¹)</u> :	+1	$i \in [0, x]$
$\frac{T(2)}{T(1)}$	=	$\underbrace{\mathcal{I}(1)}^{i}$	$+1 \\ 0 \\ +0$	$n/2^{i} = 2$ $2^{i+1} = n$ $i = \log_{2} n - 1$
		?		\mathbb{V} So, $i \in [0, \log_2 n - 1]$

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	2) + 1,	if n > 1 otherwise
T(n/2 ⁰) I(n/2 ¹)	=	I (n/2¹) I (n/2²)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: I(n/2 ⁱ)	=	: <u>T(n/2ⁱ⁺¹)</u>	+ 1	<i>i</i> ∈ [0, <i>x</i>]
: [(2) [(1)	=	: I(1)	+1 0	$ \begin{array}{cccc} & \downarrow \\ n/2^i &= & 2 \\ 2^{i+1} &= & n \end{array} $
T(n)	=	$\underbrace{1+1+\dots+1}_{\substack{?\\ \sum_{i=0}^{log_2}n-1}1}$	+ 0	$i = \log_2 n - 1$
r (n)	=	$\sum_{i=0}^{i=0}$ 1	+ 0	ert So, $i \in [0, \log_2 n - 1]$

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	(2) + 1,	if n > 1 otherwise
T(n/2 ⁰) I(n/2 ¹)	=	I(n/2¹) I(n/2 ²)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: I(n/2 ⁺)	=	<u> </u>	+1	<i>i</i> ∈ [0, <i>x</i>]
: I(2) I(1)	=	: 	+1	$n/2^{i} = 2$ $2^{i+1} = n$
T(n) T(n)	=	$\underbrace{\frac{1+1+\cdots+1}{\sum_{i=0}^{\log_2 n-1} 1}}_{i=0}$	+ 0 + 0	$i = \log_2 n - 1$
T(n)	=	$\log_2 n - 1 - 0 + 1$	+ 0	So, $i \in [0, \log_2 n - 1]$

		$T(n) = \begin{cases} T(n/2) \\ 0, \end{cases}$	(2) + 1,	if n > 1 otherwise
T(n/2 ⁰) I (n/2¹)	=	I(n/2 ¹) I(n/2 ²)	$^{+1}_{+1}$	What's the range for <i>i</i> ?
: I (n/2ⁱ) :	=	: <u>T(n/2ⁱ⁺¹)</u> :	+ 1	$i \in [0, x]$ \Downarrow
[(2) [(1)	=		$^{+1}_{0}$	$n/2^{i} = 2$ $2^{i+1} - n$
T(n)	=	$\underbrace{1+1+\dots+1}$	+ 0	$i = \log_2 n - 1$
T(n)	=	$\sum_{i=0}^{\log_2 n-1} 1$	+ 0	\Downarrow
T(n)	=	$\log_2 n - 1 - 0 + 1$	+ 0	So, $i \in [0, \log_2 n - 1]$
T(n)	=	log ₂ n		

Algorithm design and analysis — Asymptotic Order of Growth —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Asymptotic upper bound : A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Asymptotic upper bound : A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Asymptotic tight bound : A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

Asymptotic upper bound : A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Asymptotic tight bound : A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

- In these definitions, c is a constant independent of n.
- Abuse of notation: say g(n) = O(f(n)), g(n) = Ω(f(n)), g(n) = Θ(f(n)).

TRANSITIVITY

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.

TRANSITIVITY

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$,

TRANSITIVITY

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- ▶ If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.
- If f = O(g), then f + g =

TRANSITIVITY

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- ▶ If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

• If
$$f = O(g)$$
, then $f + g = \Theta(g)$.

TRANSITIVITY

- If f = O(g) and g = O(h), then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- ▶ If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

• If
$$f = O(g)$$
, then $f + g = \Theta(g)$.

PROVE THAT THE PROPERTIES FOR O ARE TRUE!!!

•
$$f(n) = pn^2 + qn + r$$
 is

• $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.

f(n) = pn² + qn + r is θ(n²). Can ignore lower order terms.
Is f(n) = pn² + qn + r = O(n³)?

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i =$

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- *f*(*n*) = ∑_{0≤i≤d} *a_inⁱ* = *O*(*n^d*), if *d* > 0 is an integer constant and *a_d* > 0. Definition of polynomial time

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- *f*(*n*) = ∑_{0≤i≤d} *a_inⁱ* = *O*(*n^d*), if *d* > 0 is an integer constant and *a_d* > 0. Definition of polynomial time
- ► Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- *f*(*n*) = ∑_{0≤i≤d} *a_inⁱ* = *O*(*n^d*), if *d* > 0 is an integer constant and *a_d* > 0. Definition of polynomial time
- ► Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants a, b > 1.
- For every x > 0, $\log n = O(n^x)$.

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- *f*(*n*) = ∑_{0≤i≤d} *a_inⁱ* = *O*(*n^d*), if *d* > 0 is an integer constant and *a_d* > 0. Definition of polynomial time
- ► Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants a, b > 1.
- For every x > 0, $\log n = O(n^x)$.
- For every r > 1 and every d > 0, $n^d = O(r^n)$.

Algorithm design and analysis — Common Running Times —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

 Running time is at most a constant factor times the size of the input.

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time.

- Running time is at most a constant factor times the size of the input.
- Finding the minimum, merging two sorted lists.
- Sub-linear time. Binary search in a sorted array of n numbers takes O(log n) time.

• Any algorithm where the costliest step is sorting.

Quadratic Time

• Enumerate all pairs of elements.

- Enumerate all pairs of elements.
- ► Given a set of *n* points in the plane, find the pair that are the closest.

- Enumerate all pairs of elements.
- ► Given a set of n points in the plane, find the pair that are the closest. Surprising fact: can solve this problem in O(n log n) time later in the semester.

Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- ► Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- ► Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
- Running time is

- Does a graph have an independent set of size k, where k is a constant, i.e. there are k nodes such that no two are joined by an edge?
- Algorithm: For each subset S of k nodes, check if S is an independent set. If the answer is yes, report it.
- Running time is $O(k^2 \binom{n}{k}) = O(n^k)$.

What is the largest size of an independent set in a graph with n nodes?

- What is the largest size of an independent set in a graph with n nodes?
- ► Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of size i. Output largest independent set found.

- What is the largest size of an independent set in a graph with n nodes?
- ► Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of size i. Output largest independent set found.
- What is the running time?

- What is the largest size of an independent set in a graph with n nodes?
- ► Algorithm: For each 1 ≤ i ≤ n, check if the graph has an independent size of size i. Output largest independent set found.
- What is the running time? $O(n^2 2^n)$.