

Algorithm design and analysis — Greedy algorithms —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

- \triangleright Start discussion of different ways of designing algorithms.
- Greedy algorithms, divide and conquer, dynamic programming.
- Discuss principles that can solve a variety of problem types.
- Design an algorithm, prove its correctness, analyse its complexity.
- \triangleright Start discussion of different ways of designing algorithms.
- Greedy algorithms, divide and conquer, dynamic programming.
- Discuss principles that can solve a variety of problem types.
- Design an algorithm, prove its correctness, analyse its complexity.
- \triangleright Greedy algorithms: make the current best choice.

Algorithm design and analysis — Coin change —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

INSTANCE Let C be a set of coins $\{c_1, c_2, \dots, c_n\}$ in which c_i means a coin of a specific value and $c_i = c_j$ if $i = j$. Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the amount S.

INSTANCE Let C be a set of coins $\{c_1, c_2, \dots, c_n\}$ in which c_i means a coin of a specific value and $c_i = c_j$ if $i = i$. Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the amount S.

EXAMPLE

.

.

 $C = \{1, 2, 6\}$ and $S = 8$

INSTANCE Let C be a set of coins $\{c_1, c_2, \dots, c_n\}$ in which c_i means a coin of a specific value and $c_i = c_j$ if $i = i$. Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the amount S.

EXAMPLE

.

 $C = \{1, 2, 6\}$ and $S = 8$

What's the smallest number of coins to achieve $S = 8$?

.

INSTANCE Let C be a set of coins $\{c_1, c_2, \dots, c_n\}$ in which c_i means a coin of a specific value and $c_i = c_j$ if $i = i$. Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the amount S.

EXAMPLE

 $C = \{1, 2, 6\}$ and $S = 8$

What's the smallest number of coins to achieve $S = 8$? 2 coins.

.

INSTANCE Let C be a set of coins $\{c_1, c_2, \dots, c_n\}$ in which c_i means a coin of a specific value and $c_i = c_j$ if $i = i$. Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the amount S.

EXAMPLE

 $C = \{1, 2, 6\}$ and $S = 8$

What's the smallest number of coins to achieve $S = 8$? 2 coins. Design an algorithm to compute the smallest number of coins.

Algorithm design and analysis — Interval Scheduling —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Interval Scheduling

INSTANCE Nonempty set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

Interval Scheduling

INSTANCE Nonempty set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

- \triangleright Two jobs are compatible if they do not overlap.
- \blacktriangleright This problem models the situation where you have a resource, a set of fixed jobs, and you want to schedule as many jobs as possible.

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

The best solution has 3 compatible jobs. But the it depends on the order in which the jobs are processed !!!!

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

Earliest start time – Increasing order of start time $s(i)$ **.**

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

Earliest start time – Increasing order of start time $s(i)$ **.**

The number of compatible jobs using this strategy is 1, against 3 jobs in the best solution!!!

Silvio Guimarães Creedy algorithm Creedy algorithm Creedy algorithm and the 23

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

The best solution has 2 compatible jobs. But the it depends on the order in which the jobs are processed !!!!

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- Exey question: in what order should we process the jobs?

Shortest interval – Increasing order of length $f(i) - s(i)$.

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

Shortest interval – Increasing order of length $f(i) - s(i)$.

The number of compatible jobs using this strategy is 1, against 2 iobs in the best solution!!!

Silvio Guimarães [Greedy algorithm](#page-0-0) 7 de 23

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

The best solution has 4 compatible jobs. But the it depends on the order in which the jobs are processed !!!!

Silvio Guimarães Calendario Constitución de Calendario de 23 de 23

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

Fewest conflicts – Increasing order of the number of conflicting jobs

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

Fewest conflicts – Increasing order of the number of conflicting jobs

The number of compatible jobs using this strategy is 3, against 4 jobs in the best solution!!!

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result.
- \triangleright Key question: in what **order** should we process the jobs?

The best solution has 3 compatible jobs. But the it depends on the order in which the jobs are processed !!!!

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result. 34

34 Process jobs in some order. Add next job to the result if it

34 Sr Process jobs in some order. Add next job to the result if it

34 Sr Process in the finish time f (i).

54 Sr Process the interest finish time - In
- \triangleright Key question: in what **order** should we process the jobs?

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result. 34

34 Process jobs in some order. Add next job to the result if it

34 Sr Process jobs in some order. Add next job to the result if it

34 Sr Process in the finish time f (i).

54 Sr Process the interest finish time - In
- \triangleright Key question: in what **order** should we process the jobs?

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result. 34

34 Process jobs in some order. Add next job to the result if it

34 Sr Process jobs in some order. Add next job to the result if it

34 Sr Process in the finish time f (i).

54 Sr Process the interest finish time - In
- \triangleright Key question: in what **order** should we process the jobs?

- \triangleright Process jobs in some order. Add next job to the result if it is compatible with the jobs already in the result. 34

34 Process jobs in some order. Add next job to the result if it

34 Sr Process jobs in some order. Add next job to the result if it

34 Sr Process in the finish time f (i).

54 Sr Process the interest finish time - In
- \triangleright Key question: in what **order** should we process the jobs?

The number of compatible jobs using this strategy is 3.

Algorithm: IS Algorithm: Earliest Finish Time (EFT)

- **input** : A set of jobs R output: A set of compatible jobs A
- 1 Let R be the set of all jobs;
- ² Let A be an empty set for representing the solution;
- 3 while R is not empty do
- 4 Choose a job $i \in R$ that has the smallest finishing time;
- 5 Add request i to A ;
- 6 Delete all jobs from R that are not compatible with job i;

7 end

Algorithm: IS Algorithm: Earliest Finish Time (EFT)

input : A set of jobs R output: A set of compatible jobs A

1 Let R be the set of all jobs;

2 Let A be an empty set for representing the solution;

- 3 while R is not empty do
- 4 Choose a job $i \in R$ that has the smallest finishing time;
- 5 Add request i to A ;
- 6 Delete all jobs from R that are not compatible with job i;

7 end

Algorithm: IS Algorithm: Earliest Finish Time (EFT)

- **input** : A set of jobs R output: A set of compatible jobs A
- 1 Let R be the set of all jobs;

² Let A be an empty set for representing the solution;

- ³ while R is not empty do
- 4 Choose a job $i \in R$ that has the smallest finishing time;
- 5 \blacksquare Add request *i* to A;
- 6 Delete all jobs from R that are not compatible with job i;

7 end

Algorithm: IS Algorithm: Earliest Finish Time (EFT)

- **input** : A set of jobs R output: A set of compatible jobs A
- 1 Let R be the set of all jobs;
- ² Let A be an empty set for representing the solution;
- ³ while R is not empty do
- 4 Choose a job $i \in R$ that has the smallest finishing time;
- 5 \blacksquare Add request *i* to A;
- 6 Delete all jobs from R that are not compatible with job i;

7 end

Analysing the EFT Algorithm

- In Let O be an optimal set of jobs. We will show that $|A| = |O|$.
- In Let i_1, i_2, \ldots, i_k be the set of jobs in A in order.
- In Let j_1, j_2, \ldots, j_m be the set of jobs in O in order.
- ► Claim: For all indices $r \leq k$, $f(i_r) \leq f(j_r)$. Prove by induction on r.

Analysing the EFT Algorithm

- In Let O be an optimal set of jobs. We will show that $|A| = |O|$.
- In Let i_1, i_2, \ldots, i_k be the set of jobs in A in order.
- In Let i_1, j_2, \ldots, i_m be the set of jobs in O in order.
- ► Claim: For all indices $r \leq k$, $f(i_r) \leq f(j_r)$. Prove by induction on r.

Analysing the EFT Algorithm

- In Let O be an optimal set of jobs. We will show that $|A| = |O|$.
- In Let i_1, i_2, \ldots, i_k be the set of jobs in A in order.
- In Let i_1, j_2, \ldots, i_m be the set of jobs in O in order.
- ► Claim: For all indices $r \leq k$, $f(i_r) \leq f(j_r)$. Prove by induction on r.

 \triangleright Claim: The greedy algorithm returns an optimal set A.

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S.

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S.

Always select first interval. Let finish time be f .
Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S.

Always select first interval. Let finish time be f.

Iterate over S to find the first index *i* such that $S[i] > f$.

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S.

Always select first interval. Let finish time be f .

Iterate over S to find the first index *i* such that $S[i] > f$.

Running time is $O(n \log n)$, dominated by sorting.

Algorithm design and analysis — Interval Partitioning —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

INTERVAL PARTITIONING

INSTANCE Set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of n jobs.

SOLUTION A partition of the jobs into k sets, where each set of jobs is mutually compatible, and k is minimised.

Interval Partitioning

INSTANCE Set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of n jobs.

SOLUTION A partition of the jobs into k sets, where each set of jobs is mutually compatible, and k is minimised.

INTERVAL PARTITIONING

INSTANCE Set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of *n* jobs.

SOLUTION A partition of the jobs into k sets, where each set of jobs is mutually compatible, and k is minimised.

 \blacktriangleright This problem models the situation where you have set of fixed jobs, and you want to schedule all jobs using as few resources as possible.

 \triangleright The depth of a set of intervals is the maximum number that contain any time point.

 \triangleright The depth of a set of intervals is the maximum number that contain any time point.

- \triangleright The depth of a set of intervals is the maximum number that contain any time point.
- \triangleright Claim: In any instance of INTERVAL PARTITIONING, $k \geq$ depth.

- \triangleright The depth of a set of intervals is the maximum number that contain any time point.
- \triangleright Claim: In any instance of INTERVAL PARTITIONING, $k \geq$ depth.
- Is it possible to compute k efficiently? Is $k =$ depth?

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
 4 | foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \mathbf{5} | Exclude the labels of I_i from consideration for I_i6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 8 | Assign a nonexcluded label to I_i9 else
10 | Leave I_i unlabeled
11 end
12 end
```

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
       foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \mathbf{5} | Exclude the labels of I_i from consideration for I_i6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 8 | | Assign a nonexcluded label to I_i9 else
10 | Leave I_i unlabeled
11 end
12 end
```

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
 4 | foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \overline{5} | Exclude the labels of I_i from consideration for I_i6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 8 | | Assign a nonexcluded label to I_i9 else
\overline{10} Leave I_i unlabeled
11 end
12 end
```

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
       foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \overline{5} | Exclude the labels of I<sub>i</sub> from consideration for I<sub>i</sub>
 6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 8 | Assign a nonexcluded label to I_i9 else
10 | Leave I_i unlabeled
11 end
12 end
```
Every interval gets a label and **no pair of overlapping intervals** get the same label.

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
       foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \mathbf{5} | Exclude the labels of I_i from consideration for I_i6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 \vert | Assign a nonexcluded label to I_i9 else
\overline{10} | Leave I_i unlabeled
11 end
12 end
```
 \triangleright Every interval gets a label and no pair of overlapping intervals get the same label.

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
       foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \mathbf{5} | Exclude the labels of I_i from consideration for I_i6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 8 | Assign a nonexcluded label to I_i9 else
10 | Leave I_i unlabeled
11 end
12 end
```
- \triangleright Every interval gets a label and no pair of overlapping intervals get the same label.
- \triangleright The greedy algorithm is **optimal**.

```
Algorithm: Interval partitioning algorithm
   input : A set of jobs R
   output: K sets of mutually compatible jobs
 1 Sort the interval by their start times, breaking ties arbitrarily;
 2 Let I_1, I_2, \cdots, I_n, denote the interval in this order;
 3 for j = 1 to n do
       foreach interval I_i that preceds I_i in sorted order and overlaps it do
 \mathbf{5} | Exclude the labels of I_i from consideration for I_i6 end
 7 if there is any label from \{1, 2, \dots, d\} that has not been excluded then
 8 | Assign a nonexcluded label to I_i9 else
10 | Leave I_i unlabeled
11 end
12 end
```
- \triangleright Every interval gets a label and no pair of overlapping intervals get the same label.
- \triangleright The greedy algorithm is **optimal**.
- \triangleright The running time of the algorithm is $O(n \log n)$.

Algorithm design and analysis

— Minimising Lateness —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Scheduling to Minimise Lateness

- \triangleright Study different model: job *i* has a length $t(i)$ and a deadline $d(i)$.
- \triangleright We want to schedule all jobs on one resource.
- \triangleright Our goal is to assign a starting time $s(i)$ to each job such that each job is delayed as little as possible.
- A job *i* is delayed if $f(i) > d(i)$; the lateness of the job is $max(0, f(i) - d(i)).$
- \triangleright The lateness of a schedule is max_i max(0, $f(i) d(i)$).

Scheduling to Minimise Lateness

- \triangleright Study different model: job *i* has a length $t(i)$ and a deadline $d(i)$.
- \triangleright We want to schedule all jobs on one resource.
- \triangleright Our goal is to assign a starting time $s(i)$ to each job such that each job is delayed as little as possible.
- A job *i* is delayed if $f(i) > d(i)$; the lateness of the job is $max(0, f(i) - d(i)).$
- \triangleright The lateness of a schedule is max_i max(0, $f(i) d(i)$).

Scheduling to Minimise Lateness

- \triangleright Study different model: job *i* has a length $t(i)$ and a deadline $d(i)$.
- \triangleright We want to schedule all jobs on one resource.
- \triangleright Our goal is to assign a starting time $s(i)$ to each job such that each job is delayed as little as possible.
- A job *i* is delayed if $f(i) > d(i)$; the lateness of the job is $max(0, f(i) - d(i)).$
- Fine lateness of a schedule is max_i max(0, $f(i) d(i)$).

MINIMISE LATENESS

INSTANCE Set $\{(t(i), d(i)), 1 \le i \le n\}$ of lengths and deadlines of n jobs.

SOLUTION Set $\{s(i), 1 \le i \le n\}$ of start times such that $max_i max(0, s(i) + t(i) - d(i))$ is as small as possible.

MINIMISE LATENESS

- **INSTANCE** Set $\{(t(i), d(i)), 1 \le i \le n\}$ of lengths and deadlines of n jobs.
- **SOLUTION** Set $\{s(i), 1 \le i \le n\}$ of start times such that $max_i max(0, s(i) + t(i) - d(i))$ is as small as possible.

 \triangleright Key question: In what order should we schedule the jobs?

MINIMISE LATENESS

- **INSTANCE** Set $\{(t(i), d(i)), 1 \le i \le n\}$ of lengths and deadlines of n jobs.
- **SOLUTION** Set $\{s(i), 1 \le i \le n\}$ of start times such that $max_i max(0, s(i) + t(i) - d(i))$ is as small as possible.
	- \triangleright Key question: In what order should we schedule the jobs? **Shortest length** Increasing order of length $t(i)$. **Shortest slack time** Increasing order of $d(i) - t(i)$. **Earliest deadline** Increasing order of deadline $d(i)$.

Shortest length

Increasing order of length $t(i)$.

Shortest length

Increasing order of length $t(i)$.

$$
\begin{array}{c|c|c|c} & 1 & 2 \\ \hline t_i & 1 & 10 \\ \hline d_i & 100 & 10 \\ \hline \end{array}
$$

counter-example

Shortest length

Increasing order of length $t(i)$.

$$
\begin{array}{c|c|c|c} & 1 & 2 \\ \hline t_i & 1 & 10 \\ \hline d_i & 100 & 10 \\ \end{array}
$$

counter-example

Shortest slack time

Increasing order of $d(i) - t(i)$.

Shortest length

Increasing order of length $t(i)$.

$$
\begin{array}{c|c|c}\n & 1 & 2 \\
\hline\n t_i & 1 & 10 \\
\hline\n d_i & 100 & 10\n\end{array}
$$

counter-example

Shortest slack time

Increasing order of $d(i) - t(i)$.

$$
\begin{array}{c|c|c|c} & 1 & 2 \\ \hline t_i & 1 & 10 \\ d_i & 2 & 10 \end{array}
$$

counter-example

Algorithm: Minimising lateness algorithm

```
input : A set of jobs Routput: The set of scheduled interval [s(i), f(i)] for i = 1, \dots, n
```
- ¹ Sort the jobs in order of their deadlines;
- 2 Assume, for simplicity, that $d_1 \leq \cdots \leq d_n$;
- 3 Initially, $f = s$;
- 4 for $j = 1$ to n do 5 Assign the job *i* to the time interval from $s(i) = f$ to $f(i) = f + t_i$; 6 Let $f = f + t_i$ 7 end

Algorithm: Minimising lateness algorithm

```
input : A set of jobs Routput: The set of scheduled interval [s(i), f(i)] for i = 1, \dots, n
```
- ¹ Sort the jobs in order of their deadlines;
- 2 Assume, for simplicity, that $d_1 \leq \cdots \leq d_n$;
- 3 Initially, $f = s$;
- 4 for $j = 1$ to n do
- 5 Assign the job *i* to the time interval from $s(i) = f$ to $f(i) = f + t_i$;
- 6 Let $f = f + t_i$
- 7 end

Algorithm: Minimising lateness algorithm

```
input : A set of jobs Routput: The set of scheduled interval [s(i), f(i)] for i = 1, \dots, n
```
- ¹ Sort the jobs in order of their deadlines;
- 2 Assume, for simplicity, that $d_1 \leq \cdots \leq d_n$;
- 3 Initially, $f = s$;

4 for $j = 1$ to n do 5 Assign the job *i* to the time interval from $s(i) = f$ to $f(i) = f + t_i$; 6 Let $f = f + t_i$ 7 end

Algorithm: Minimising lateness algorithm

```
input : A set of jobs Routput: The set of scheduled interval [s(i), f(i)] for i = 1, \dots, n
```
- ¹ Sort the jobs in order of their deadlines;
- 2 Assume, for simplicity, that $d_1 \leq \cdots \leq d_n$;
- 3 Initially, $f = s$;

```
4 for j = 1 to n do
```

```
5 Assign the job i to the time interval from s(i) = f to f(i) = f + t_i;
```

```
6 Let f = f + t_i
```

```
7 end
```
Algorithm: Minimising lateness algorithm

input : A set of jobs R **output:** The set of scheduled interval $[s(i), f(i)]$ for $i = 1, \dots, n$

- ¹ Sort the jobs in order of their deadlines;
- 2 Assume, for simplicity, that $d_1 \leq \cdots \leq d_n$;
- 3 Initially, $f = s$;
- 4 for $i = 1$ to n do

5 Assign the job i to the time interval from $s(i) = f$ to $f(i) = f + t_i$;

$$
6 \mid \text{Let } f = f + t_i
$$

Algorithm: Minimising lateness algorithm

```
input: A set of jobs Routput: The set of scheduled interval [s(i), f(i)] for i = 1, \dots, n1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d_1 \leq \cdots \leq d_n;
3 Initially, f = s;
4 for i = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f(i) = f + t_i;
6 Let f = f + t_i7 end
```
- \blacktriangleright Proof of correctness is more complex.
- \triangleright We will use an exchange argument: gradually modify the optimal schedule O till it is the same as the schedule A computed by the algorithm.

A schedule has an **inversion** if a job *j* with deadline $d(j)$ is scheduled before a job i with an earlier deadline $d(i)$, i.e., $d(i) < d(j)$ and $s(j) < s(i)$.

A schedule has an **inversion** if a job *j* with deadline $d(i)$ is scheduled before a job i with an earlier deadline $d(i)$, i.e., $d(i) < d(j)$ and $s(j) < s(i)$.

▶ The algorithm produces a schedule with no inversions and no idle time.

- \triangleright The algorithm produces a schedule with **no inversions** and no idle time.
- \triangleright All schedules with no inversions and no idle time have the same lateness.

- \triangleright The algorithm produces a schedule with no inversions and no idle time.
- \triangleright All schedules with no inversions and no idle time have the same lateness.
- \triangleright There is an optimal schedule with no idle time.

- \triangleright The algorithm produces a schedule with no inversions and no idle time.
- \triangleright All schedules with no inversions and no idle time have the same lateness.
- \triangleright There is an optimal schedule with no idle time.
- \triangleright There is an optimal schedule with no inversions and no idle time.

- \triangleright The algorithm produces a schedule with **no inversions** and no idle time.
- \triangleright All schedules with no inversions and no idle time have the same lateness.
- \triangleright There is an optimal schedule with no idle time.
- \triangleright There is an optimal schedule with no inversions and no idle time.
- \triangleright The greedy algorithm produces an **optimal schedule**.

 \triangleright Claim: the optimal schedule O has no inversions and no idle time. 1. If O has an inversion, then there is a pair of jobs i and j such that i is scheduled just before *i* and $d(i) < d(j)$.

- \triangleright Claim: the optimal schedule O has no inversions and no idle time.
	- 1. If O has an inversion, then there is a pair of jobs i and j such that i is scheduled just before *i* and $d(i) < d(i)$.
	- 2. Let i and j be consecutive inverted jobs in O . After swapping i and i , we get a schedule O' with one less inversion.

 \triangleright Claim: the optimal schedule O has no inversions and no idle time.

- 1. If O has an inversion, then there is a pair of jobs i and j such that i is scheduled just before *i* and $d(i) < d(i)$.
- 2. Let i and j be consecutive inverted jobs in O . After swapping i and i , we get a schedule O' with one less inversion.
- 3. The maximum lateness of O' is no larger than the maximum lateness of O.
- If we can prove the last item, we are done, since after $\binom{n}{2}$ $\binom{n}{2}$ swaps, we obtain a schedule with no inversions whose maximum lateness is no larger than that of O.

In O, assume each request r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O', let the lateness values be $I'(r)$.

- In O, assume each request r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O', let the lateness values be $I'(r)$.
- If $I'(k) = I(k)$, for all $k \neq i, j$.

In O, assume each request r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O', let the lateness values be $I'(r)$.

$$
\blacktriangleright \ \ l'(k) = l(k), \text{ for all } k \neq i, j.
$$

 \blacktriangleright $\vert f'(j) \vert \leq l(j)$.

- In O, assume each request r is scheduled for the interval $[s(r), f(r)]$ and has lateness $I(r)$. For O', let the lateness values be $I'(r)$.
- If $I'(k) = I(k)$, for all $k \neq i, j$.
- \blacktriangleright $\vert f'(j) \vert \leq l(j)$.
- \blacktriangleright $\mathsf{I}'(i) \leq \mathsf{I}(j).$
- \triangleright Greedy algorithms make local decisions.
- \blacktriangleright Three analysis strategies:

Greedy algorithm stays ahead Show that After each step in the greedy algorithm, its solution is at least as good as that produced by any other algorithm.

Structural bound First, discover a property that must be satisfied by every possible solution. Then show that the (greedy) algorithm produces a solution with this property. **Exchange argument** Transform the optimal solution in steps into the solution by the greedy algorithm without worsening the quality of the optimal solution.