
Algorithm design and analysis

— Greedy algorithms —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm Design

I Start discussion of different ways of designing algorithms.
I Greedy algorithms, divide and conquer, dynamic programming.
I Discuss principles that can solve a variety of problem types.
I Design an algorithm, prove its correctness, analyse its complexity.

I Greedy algorithms: make the current best choice.

Silvio Guimarães Greedy algorithm 2 de 23

Algorithm Design

I Start discussion of different ways of designing algorithms.
I Greedy algorithms, divide and conquer, dynamic programming.
I Discuss principles that can solve a variety of problem types.
I Design an algorithm, prove its correctness, analyse its complexity.
I Greedy algorithms: make the current best choice.

Silvio Guimarães Greedy algorithm 2 de 23

Algorithm design and analysis

— Coin change —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Coin change

Silvio Guimarães Greedy algorithm 4 de 23

Coin change

INSTANCE Let C be a set of coins {c1, c2, · · · , cn} in which
ci means a coin of a specific value and ci = cj if
i = j . Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the
amount S .

Coin change

Silvio Guimarães Greedy algorithm 4 de 23

Coin change

INSTANCE Let C be a set of coins {c1, c2, · · · , cn} in which
ci means a coin of a specific value and ci = cj if
i = j . Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the
amount S .

Example

I C = {1, 2, 6} and S = 8

2 coins

.

.

Coin change

Silvio Guimarães Greedy algorithm 4 de 23

Coin change

INSTANCE Let C be a set of coins {c1, c2, · · · , cn} in which
ci means a coin of a specific value and ci = cj if
i = j . Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the
amount S .

Example

I C = {1, 2, 6} and S = 8

What’s the smallest number of coins to achieve S = 8?

2 coins

.

.

Coin change

Silvio Guimarães Greedy algorithm 4 de 23

Coin change

INSTANCE Let C be a set of coins {c1, c2, · · · , cn} in which
ci means a coin of a specific value and ci = cj if
i = j . Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the
amount S .

Example

I C = {1, 2, 6} and S = 8

What’s the smallest number of coins to achieve S = 8? 2 coins .

.

Coin change

Silvio Guimarães Greedy algorithm 4 de 23

Coin change

INSTANCE Let C be a set of coins {c1, c2, · · · , cn} in which
ci means a coin of a specific value and ci = cj if
i = j . Let S be the amount of the change.

SOLUTION The smallest number of coins to achieve the
amount S .

Example

I C = {1, 2, 6} and S = 8

What’s the smallest number of coins to achieve S = 8? 2 coins .

Design an algorithm to compute the smallest number of coins .

Algorithm design and analysis

— Interval Scheduling —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Interval Scheduling

Silvio Guimarães Greedy algorithm 6 de 23

Interval Scheduling

INSTANCE Nonempty set {(s(i), f (i)), 1 ≤ i ≤ n} of start
and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do
not overlap.

I This problem models the situation
where you have a resource, a set of
fixed jobs, and you want to schedule
as many jobs as possible.

h

g

f

e

d

c

b

a

Interval Scheduling

Silvio Guimarães Greedy algorithm 6 de 23

Interval Scheduling

INSTANCE Nonempty set {(s(i), f (i)), 1 ≤ i ≤ n} of start
and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do
not overlap.

I This problem models the situation
where you have a resource, a set of
fixed jobs, and you want to schedule
as many jobs as possible.h

g

f

e

d

c

b

a

h

e

b

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

Template for Greedy Algorithm

Silvio Guimarães Greedy algorithm 7 de 23

I Process jobs in some order. Add next job to the result if it
is compatible with the jobs already in the result.

I Key question: in what order should we process the jobs?

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

Earliest start time – Increasing order of start time s(i).

dcb

a

dcb

a

The number of compatible jobs using this strategy is 1, against 3
jobs in the best solution!!!

The best solution has 2 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

cb

a

Shortest interval – Increasing order of length f (i)− s(i).

cb

a

cb

a

The number of compatible jobs using this strategy is 1, against 2
jobs in the best solution!!!

The best solution has 4 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

ik

hj

dcb

a e f g

Fewest conflicts – Increasing order of the number of conflicting jobs

ik

hj

dcb

a e f g

ik

hj

dcb

a e f g

The number of compatible jobs using this strategy is 3, against 4
jobs in the best solution!!!

Earliest finish time – Increasing order of finish time f (i).

dcb

a

The best solution has 3 compatible jobs. But the it depends on
the order in which the jobs are processed !!!!

dcb

a

dcb

a

dcb

a

dcb

a

The number of compatible jobs using this strategy is 3.

IS Algorithm: Earliest Finish Time (EFT)

Silvio Guimarães Greedy algorithm 8 de 23

Algorithm: IS Algorithm: Earliest Finish Time (EFT)
input : A set of jobs R
output: A set of compatible jobs A

1 Let R be the set of all jobs;
2 Let A be an empty set for representing the solution;

3 while R is not empty do
4 Choose a job i ∈ R that has the smallest finishing time;
5 Add request i to A;
6 Delete all jobs from R that are not compatible with job i;
7 end

8 Return the set A as the set of mutually compatible jobs

IS Algorithm: Earliest Finish Time (EFT)

Silvio Guimarães Greedy algorithm 8 de 23

Algorithm: IS Algorithm: Earliest Finish Time (EFT)
input : A set of jobs R
output: A set of compatible jobs A

1 Let R be the set of all jobs;
2 Let A be an empty set for representing the solution;

3 while R is not empty do
4 Choose a job i ∈ R that has the smallest finishing time;
5 Add request i to A;
6 Delete all jobs from R that are not compatible with job i;
7 end

8 Return the set A as the set of mutually compatible jobs

IS Algorithm: Earliest Finish Time (EFT)

Silvio Guimarães Greedy algorithm 8 de 23

Algorithm: IS Algorithm: Earliest Finish Time (EFT)
input : A set of jobs R
output: A set of compatible jobs A

1 Let R be the set of all jobs;
2 Let A be an empty set for representing the solution;

3 while R is not empty do
4 Choose a job i ∈ R that has the smallest finishing time;
5 Add request i to A;
6 Delete all jobs from R that are not compatible with job i;
7 end

8 Return the set A as the set of mutually compatible jobs

IS Algorithm: Earliest Finish Time (EFT)

Silvio Guimarães Greedy algorithm 8 de 23

Algorithm: IS Algorithm: Earliest Finish Time (EFT)
input : A set of jobs R
output: A set of compatible jobs A

1 Let R be the set of all jobs;
2 Let A be an empty set for representing the solution;

3 while R is not empty do
4 Choose a job i ∈ R that has the smallest finishing time;
5 Add request i to A;
6 Delete all jobs from R that are not compatible with job i;
7 end

8 Return the set A as the set of mutually compatible jobs

Analysing the EFT Algorithm

I Let O be an optimal set of jobs. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of jobs in A in order.
I Let j1, j2, . . . , jm be the set of jobs in O in order.
I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

The inductive step in the proof that the greedy algorithm stays ahead

jrjr−1

irir−1

Can the greedy algorithm’s
r th interval really finish later?

I Claim: The greedy algorithm returns an optimal set A.

Silvio Guimarães Greedy algorithm 9 de 23

Analysing the EFT Algorithm

I Let O be an optimal set of jobs. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of jobs in A in order.
I Let j1, j2, . . . , jm be the set of jobs in O in order.
I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

The inductive step in the proof that the greedy algorithm stays ahead

jrjr−1

irir−1

Can the greedy algorithm’s
r th interval really finish later?

I Claim: The greedy algorithm returns an optimal set A.

Silvio Guimarães Greedy algorithm 9 de 23

Analysing the EFT Algorithm

I Let O be an optimal set of jobs. We will show that |A| = |O|.
I Let i1, i2, . . . , ik be the set of jobs in A in order.
I Let j1, j2, . . . , jm be the set of jobs in O in order.
I Claim: For all indices r ≤ k , f (ir) ≤ f (jr). Prove by induction on r .

The inductive step in the proof that the greedy algorithm stays ahead

jrjr−1

irir−1

Can the greedy algorithm’s
r th interval really finish later?

I Claim: The greedy algorithm returns an optimal set A.

Silvio Guimarães Greedy algorithm 9 de 23

Implementing the EFT Algorithm

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S .

Always select first interval. Let finish time be f .

Iterate over S to find the first index i such that S [i] ≥ f .

Running time is O(n log n), dominated by sorting.

Silvio Guimarães Greedy algorithm 10 de 23

Implementing the EFT Algorithm

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S .

Always select first interval. Let finish time be f .

Iterate over S to find the first index i such that S [i] ≥ f .

Running time is O(n log n), dominated by sorting.

Silvio Guimarães Greedy algorithm 10 de 23

Implementing the EFT Algorithm

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S .

Always select first interval. Let finish time be f .

Iterate over S to find the first index i such that S [i] ≥ f .

Running time is O(n log n), dominated by sorting.

Silvio Guimarães Greedy algorithm 10 de 23

Implementing the EFT Algorithm

Reorder jobs so that they are in increasing order of finish time.

Store starting time of jobs in an array S .

Always select first interval. Let finish time be f .

Iterate over S to find the first index i such that S [i] ≥ f .

Running time is O(n log n), dominated by sorting.

Silvio Guimarães Greedy algorithm 10 de 23

Algorithm design and analysis

— Interval Partitioning —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Interval Partitioning

Silvio Guimarães Greedy algorithm 12 de 23

Interval Partitioning

INSTANCE Set {(s(i), f (i)), 1 ≤ i ≤ n} of start and finish
times of n jobs.

SOLUTION A partition of the jobs into k sets, where each
set of jobs is mutually compatible, and k is min-
imised.

This schedule uses 4 class-
rooms to schedule 10 lectures.

a f i

b h

c d g

e j

I This problem models the
situation where you have set of
fixed jobs, and you want to
schedule all jobs using as few
resources as possible.

Interval Partitioning

Silvio Guimarães Greedy algorithm 12 de 23

Interval Partitioning

INSTANCE Set {(s(i), f (i)), 1 ≤ i ≤ n} of start and finish
times of n jobs.

SOLUTION A partition of the jobs into k sets, where each
set of jobs is mutually compatible, and k is min-
imised.

This schedule uses only 3 class-
rooms to schedule 10 lectures.

a e h

b g i

fc d j

I This problem models the
situation where you have set of
fixed jobs, and you want to
schedule all jobs using as few
resources as possible.

Interval Partitioning

Silvio Guimarães Greedy algorithm 12 de 23

Interval Partitioning

INSTANCE Set {(s(i), f (i)), 1 ≤ i ≤ n} of start and finish
times of n jobs.

SOLUTION A partition of the jobs into k sets, where each
set of jobs is mutually compatible, and k is min-
imised.

This schedule uses only 3 class-
rooms to schedule 10 lectures.

a e h

b g i

fc d j

I This problem models the
situation where you have set of
fixed jobs, and you want to
schedule all jobs using as few
resources as possible.

Depth of Intervals

Silvio Guimarães Greedy algorithm 13 de 23

a f i

b h

c d g

e j

a e h

b g i

fc d j

I The depth of a set of intervals is the maximum number that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.
I Is it possible to compute k efficiently? Is k = depth?

Depth of Intervals

Silvio Guimarães Greedy algorithm 13 de 23

a f i

b h

c d g

e j

a e h

b g i

fc d j

I The depth of a set of intervals is the maximum number that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.
I Is it possible to compute k efficiently? Is k = depth?

Depth of Intervals

Silvio Guimarães Greedy algorithm 13 de 23

The depth
is equal to 3

a f i

b h

c d g

e j

a e h

b g i

fc d j

I The depth of a set of intervals is the maximum number that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.
I Is it possible to compute k efficiently? Is k = depth?

Depth of Intervals

Silvio Guimarães Greedy algorithm 13 de 23

The depth
is equal to 3

a f i

b h

c d g

e j

a e h

b g i

fc d j

I The depth of a set of intervals is the maximum number that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.

I Is it possible to compute k efficiently? Is k = depth?

Depth of Intervals

Silvio Guimarães Greedy algorithm 13 de 23

The depth
is equal to 3

a f i

b h

c d g

e j

a e h

b g i

fc d j

I The depth of a set of intervals is the maximum number that
contain any time point.

I Claim: In any instance of Interval Partitioning, k ≥ depth.
I Is it possible to compute k efficiently? Is k = depth?

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.

I The running time of the algorithm is O(n log n).

Interval Partitioning Algorithm

Silvio Guimarães Greedy algorithm 14 de 23

Algorithm: Interval partitioning algorithm
input : A set of jobs R
output: K sets of mutually compatible jobs

1 Sort the interval by their start times, breaking ties arbitrarily;
2 Let I1, I2, · · · , In, denote the interval in this order;

3 for j = 1 to n do
4 foreach interval Ii that preceds Ij in sorted order and overlaps it do
5 Exclude the labels of Ii from consideration for Ij
6 end
7 if there is any label from {1, 2, · · · , d} that has not been excluded then
8 Assign a nonexcluded label to Ij
9 else

10 Leave Ij unlabeled
11 end
12 end

I Every interval gets a label and no pair of overlapping intervals get
the same label.

I The greedy algorithm is optimal.
I The running time of the algorithm is O(n log n).

Algorithm design and analysis

— Minimising Lateness —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Scheduling to Minimise Lateness

Silvio Guimarães Greedy algorithm 16 de 23

I Study different model: job i has a length t(i) and a
deadline d(i).

I We want to schedule all jobs on one resource.
I Our goal is to assign a starting time s(i) to each job such

that each job is delayed as little as possible.
I A job i is delayed if f (i) > d(i); the lateness of the job is

max(0, f (i)− d(i)).

I The lateness of a schedule is maxi max(0, f (i)− d(i)).

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

Scheduling to Minimise Lateness

Silvio Guimarães Greedy algorithm 16 de 23

I Study different model: job i has a length t(i) and a
deadline d(i).

I We want to schedule all jobs on one resource.
I Our goal is to assign a starting time s(i) to each job such

that each job is delayed as little as possible.
I A job i is delayed if f (i) > d(i); the lateness of the job is

max(0, f (i)− d(i)).

I The lateness of a schedule is maxi max(0, f (i)− d(i)).

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

Scheduling to Minimise Lateness

Silvio Guimarães Greedy algorithm 16 de 23

I Study different model: job i has a length t(i) and a
deadline d(i).

I We want to schedule all jobs on one resource.
I Our goal is to assign a starting time s(i) to each job such

that each job is delayed as little as possible.
I A job i is delayed if f (i) > d(i); the lateness of the job is

max(0, f (i)− d(i)).

I The lateness of a schedule is maxi max(0, f (i)− d(i)).

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

Template for Greedy Algorithm

Minimise Lateness

INSTANCE Set {(t(i), d(i)), 1 ≤ i ≤ n} of lengths and deadlines
of n jobs.

SOLUTION Set {s(i), 1 ≤ i ≤ n} of start times such that
maxi max(0, s(i) + t(i)− d(i)) is as small as possible.

I Key question: In what order should we schedule the jobs?
Shortest length Increasing order of length t(i).
Shortest slack time Increasing order of d(i)− t(i).
Earliest deadline Increasing order of deadline d(i).

Silvio Guimarães Greedy algorithm 17 de 23

Template for Greedy Algorithm

Minimise Lateness

INSTANCE Set {(t(i), d(i)), 1 ≤ i ≤ n} of lengths and deadlines
of n jobs.

SOLUTION Set {s(i), 1 ≤ i ≤ n} of start times such that
maxi max(0, s(i) + t(i)− d(i)) is as small as possible.

I Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(i).
Shortest slack time Increasing order of d(i)− t(i).
Earliest deadline Increasing order of deadline d(i).

Silvio Guimarães Greedy algorithm 17 de 23

Template for Greedy Algorithm

Minimise Lateness

INSTANCE Set {(t(i), d(i)), 1 ≤ i ≤ n} of lengths and deadlines
of n jobs.

SOLUTION Set {s(i), 1 ≤ i ≤ n} of start times such that
maxi max(0, s(i) + t(i)− d(i)) is as small as possible.

I Key question: In what order should we schedule the jobs?
Shortest length Increasing order of length t(i).
Shortest slack time Increasing order of d(i)− t(i).
Earliest deadline Increasing order of deadline d(i).

Silvio Guimarães Greedy algorithm 17 de 23

Template for Greedy Algorithm

Shortest length

Increasing order of length t(i).

1 2
ti 1 10
di 100 10

counter-example

Shortest slack time

Increasing order of d(i)− t(i).

1 2
ti 1 10
di 2 10

counter-example

Silvio Guimarães Greedy algorithm 18 de 23

Template for Greedy Algorithm

Shortest length

Increasing order of length t(i).

1 2
ti 1 10
di 100 10

counter-example

Shortest slack time

Increasing order of d(i)− t(i).

1 2
ti 1 10
di 2 10

counter-example

Silvio Guimarães Greedy algorithm 18 de 23

Template for Greedy Algorithm

Shortest length

Increasing order of length t(i).

1 2
ti 1 10
di 100 10

counter-example

Shortest slack time

Increasing order of d(i)− t(i).

1 2
ti 1 10
di 2 10

counter-example

Silvio Guimarães Greedy algorithm 18 de 23

Template for Greedy Algorithm

Shortest length

Increasing order of length t(i).

1 2
ti 1 10
di 100 10

counter-example

Shortest slack time

Increasing order of d(i)− t(i).

1 2
ti 1 10
di 2 10

counter-example

Silvio Guimarães Greedy algorithm 18 de 23

Minimising Lateness: Earliest Deadline First (EDF)

Silvio Guimarães Greedy algorithm 19 de 23

Algorithm: Minimising lateness algorithm
input : A set of jobs R
output: The set of scheduled interval [s(i), f (i)] for i = 1, · · · , n

1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d1 ≤ · · · ≤ dn;
3 Initially, f = s;

4 for j = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f (i) = f + ti ;
6 Let f = f + ti
7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9d2 = 8 d6 = 15d1 = 6 d5 = 14d4 = 9

max lateness = 1

I Proof of correctness is more complex.
I We will use an exchange argument: gradually modify the optimal

schedule O till it is the same as the schedule A computed by the
algorithm.

Minimising Lateness: Earliest Deadline First (EDF)

Silvio Guimarães Greedy algorithm 19 de 23

Algorithm: Minimising lateness algorithm
input : A set of jobs R
output: The set of scheduled interval [s(i), f (i)] for i = 1, · · · , n

1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d1 ≤ · · · ≤ dn;
3 Initially, f = s;

4 for j = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f (i) = f + ti ;
6 Let f = f + ti
7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9d2 = 8 d6 = 15d1 = 6 d5 = 14d4 = 9

max lateness = 1

I Proof of correctness is more complex.
I We will use an exchange argument: gradually modify the optimal

schedule O till it is the same as the schedule A computed by the
algorithm.

Minimising Lateness: Earliest Deadline First (EDF)

Silvio Guimarães Greedy algorithm 19 de 23

Algorithm: Minimising lateness algorithm
input : A set of jobs R
output: The set of scheduled interval [s(i), f (i)] for i = 1, · · · , n

1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d1 ≤ · · · ≤ dn;
3 Initially, f = s;

4 for j = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f (i) = f + ti ;
6 Let f = f + ti
7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9d2 = 8 d6 = 15d1 = 6 d5 = 14d4 = 9

max lateness = 1

I Proof of correctness is more complex.
I We will use an exchange argument: gradually modify the optimal

schedule O till it is the same as the schedule A computed by the
algorithm.

Minimising Lateness: Earliest Deadline First (EDF)

Silvio Guimarães Greedy algorithm 19 de 23

Algorithm: Minimising lateness algorithm
input : A set of jobs R
output: The set of scheduled interval [s(i), f (i)] for i = 1, · · · , n

1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d1 ≤ · · · ≤ dn;
3 Initially, f = s;

4 for j = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f (i) = f + ti ;
6 Let f = f + ti
7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9d2 = 8 d6 = 15d1 = 6 d5 = 14d4 = 9

max lateness = 1

I Proof of correctness is more complex.
I We will use an exchange argument: gradually modify the optimal

schedule O till it is the same as the schedule A computed by the
algorithm.

Minimising Lateness: Earliest Deadline First (EDF)

Silvio Guimarães Greedy algorithm 19 de 23

Algorithm: Minimising lateness algorithm
input : A set of jobs R
output: The set of scheduled interval [s(i), f (i)] for i = 1, · · · , n

1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d1 ≤ · · · ≤ dn;
3 Initially, f = s;

4 for j = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f (i) = f + ti ;
6 Let f = f + ti
7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9d2 = 8 d6 = 15d1 = 6 d5 = 14d4 = 9

max lateness = 1

I Proof of correctness is more complex.
I We will use an exchange argument: gradually modify the optimal

schedule O till it is the same as the schedule A computed by the
algorithm.

Minimising Lateness: Earliest Deadline First (EDF)

Silvio Guimarães Greedy algorithm 19 de 23

Algorithm: Minimising lateness algorithm
input : A set of jobs R
output: The set of scheduled interval [s(i), f (i)] for i = 1, · · · , n

1 Sort the jobs in order of their deadlines;
2 Assume, for simplicity, that d1 ≤ · · · ≤ dn;
3 Initially, f = s;

4 for j = 1 to n do
5 Assign the job i to the time interval from s(i) = f to f (i) = f + ti ;
6 Let f = f + ti
7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9 d2 = 8 d6 = 15 d1 = 6 d5 = 14 d4 = 9

lateness = 2 lateness = 0 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d3 = 9d2 = 8 d6 = 15d1 = 6 d5 = 14d4 = 9

max lateness = 1

I Proof of correctness is more complex.
I We will use an exchange argument: gradually modify the optimal

schedule O till it is the same as the schedule A computed by the
algorithm.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.
I There is an optimal schedule with no inversions and no idle time.
I The greedy algorithm produces an optimal schedule.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.
I There is an optimal schedule with no inversions and no idle time.
I The greedy algorithm produces an optimal schedule.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.
I There is an optimal schedule with no inversions and no idle time.
I The greedy algorithm produces an optimal schedule.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.
I There is an optimal schedule with no inversions and no idle time.
I The greedy algorithm produces an optimal schedule.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.

I There is an optimal schedule with no inversions and no idle time.
I The greedy algorithm produces an optimal schedule.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.
I There is an optimal schedule with no inversions and no idle time.

I The greedy algorithm produces an optimal schedule.

Properties of Schedules

Silvio Guimarães Greedy algorithm 20 de 23

I A schedule has an inversion if a job j with deadline d(j) is
scheduled before a job i with an earlier deadline d(i), i.e.,
d(i) < d(j) and s(j) < s(i).

ij

inversion

I The algorithm produces a schedule with no inversions and no idle
time.

I All schedules with no inversions and no idle time have the same
lateness.

I There is an optimal schedule with no idle time.
I There is an optimal schedule with no inversions and no idle time.
I The greedy algorithm produces an optimal schedule.

Properties of the Optimal Schedule

I Claim: the optimal schedule O has no inversions and no idle time.
1. If O has an inversion, then there is a pair of jobs i and j such that i

is scheduled just before i and d(i) < d(j).

2. Let i and j be consecutive inverted jobs in O. After swapping i and
j , we get a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum
lateness of O.

I If we can prove the last item, we are done, since after
(n
2

)
swaps,

we obtain a schedule with no inversions whose maximum lateness is
no larger than that of O.

Silvio Guimarães Greedy algorithm 21 de 23

Properties of the Optimal Schedule

I Claim: the optimal schedule O has no inversions and no idle time.
1. If O has an inversion, then there is a pair of jobs i and j such that i

is scheduled just before i and d(i) < d(j).
2. Let i and j be consecutive inverted jobs in O. After swapping i and

j , we get a schedule O ′ with one less inversion.

3. The maximum lateness of O ′ is no larger than the maximum
lateness of O.

I If we can prove the last item, we are done, since after
(n
2

)
swaps,

we obtain a schedule with no inversions whose maximum lateness is
no larger than that of O.

Silvio Guimarães Greedy algorithm 21 de 23

Properties of the Optimal Schedule

I Claim: the optimal schedule O has no inversions and no idle time.
1. If O has an inversion, then there is a pair of jobs i and j such that i

is scheduled just before i and d(i) < d(j).
2. Let i and j be consecutive inverted jobs in O. After swapping i and

j , we get a schedule O ′ with one less inversion.
3. The maximum lateness of O ′ is no larger than the maximum

lateness of O.

I If we can prove the last item, we are done, since after
(n
2

)
swaps,

we obtain a schedule with no inversions whose maximum lateness is
no larger than that of O.

Silvio Guimarães Greedy algorithm 21 de 23

Swapping Inverted Jobs

Silvio Guimarães Greedy algorithm 22 de 23

ij

inversion

ij

swapping

I In O, assume each request r is scheduled for the interval [s(r), f (r)]
and has lateness l(r). For O ′, let the lateness values be l ′(r).

I l ′(k) = l(k), for all k 6= i , j .
I l ′(j) ≤ l(j).
I l ′(i) ≤ l(j).

Swapping Inverted Jobs

Silvio Guimarães Greedy algorithm 22 de 23

ij

inversion

ij

swapping

I In O, assume each request r is scheduled for the interval [s(r), f (r)]
and has lateness l(r). For O ′, let the lateness values be l ′(r).

I l ′(k) = l(k), for all k 6= i , j .
I l ′(j) ≤ l(j).
I l ′(i) ≤ l(j).

Swapping Inverted Jobs

Silvio Guimarães Greedy algorithm 22 de 23

ij

inversion

ij

swapping

I In O, assume each request r is scheduled for the interval [s(r), f (r)]
and has lateness l(r). For O ′, let the lateness values be l ′(r).

I l ′(k) = l(k), for all k 6= i , j .

I l ′(j) ≤ l(j).
I l ′(i) ≤ l(j).

Swapping Inverted Jobs

Silvio Guimarães Greedy algorithm 22 de 23

ij

inversion

ij

swapping

I In O, assume each request r is scheduled for the interval [s(r), f (r)]
and has lateness l(r). For O ′, let the lateness values be l ′(r).

I l ′(k) = l(k), for all k 6= i , j .
I l ′(j) ≤ l(j).

I l ′(i) ≤ l(j).

Swapping Inverted Jobs

Silvio Guimarães Greedy algorithm 22 de 23

ij

inversion

ij

swapping

I In O, assume each request r is scheduled for the interval [s(r), f (r)]
and has lateness l(r). For O ′, let the lateness values be l ′(r).

I l ′(k) = l(k), for all k 6= i , j .
I l ′(j) ≤ l(j).
I l ′(i) ≤ l(j).

Summary

I Greedy algorithms make local decisions.
I Three analysis strategies:
Greedy algorithm stays ahead Show that After each step in the

greedy algorithm, its solution is at least as good as that
produced by any other algorithm.

Structural bound First, discover a property that must be satisfied
by every possible solution. Then show that the (greedy)
algorithm produces a solution with this property.

Exchange argument Transform the optimal solution in steps into
the solution by the greedy algorithm without worsening the
quality of the optimal solution.

Silvio Guimarães Greedy algorithm 23 de 23

	Coin change
	Interval Scheduling
	Interval Partitioning
	Minimising Lateness

