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Divide and Conquer

I Break up a problem into several parts .

I Solve each part recursively .
I Solve base cases by brute force.
I Efficiently combine solutions for sub-problems into final solution.
I Common use:

I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).
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Mergesort
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Sort

INSTANCE Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such
that yi ≤ yi+1, for all 1 ≤ i < n.
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Sort

INSTANCE Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such
that yi ≤ yi+1, for all 1 ≤ i < n.

I Mergesort is a divide-and-conquer algorithm for sorting.
1. Partition L into two lists A and B of size bn/2c and dn/2e

respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.



Merging Two Sorted Lists
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Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7
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output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.
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Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.
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Merging Two Sorted Lists
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Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

Running time of this algorithm is O(k + l) .



Analysing Mergesort

I Worst-case running time for n elements (T (n)) is at most the
sum of the worst-case running time for bn/2c elements, for dn/2e
elements, for splitting the input into two lists, and for merging two
sorted lists.

I Assume n is a power of 2.

T (n) ≤ 2T (n/2) + cn, n > 2
T (2) ≤ c

I Three basic ways of solving this recurrence relation:
1. “Unroll’ ’ the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in O() form and substitute into recurrence to

determine the constants.
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Unrolling the recurrence

I Recursion tree has log n levels .
I Total work done at each level is cn.
I Running time of the algorithm is cn log n.
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Substituting a Solution into the Recurrence

I Guess that the solution is cn log n (logarithm to the base 2).

I Use induction to check if the solution satisfies the recurrence
relation.

I Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
I Inductive step: assume T (m) ≤ cm log2 m for all m < n.

Therefore, T (n/2) ≤ (cn/2) log n − cn/2.

T (n) ≤ 2T (n/2) + cn

≤ 2 ((cn/2) log n − cn/2) + cn

= cn log n

Silvio Guimarães Divide and conquer 8 de 29



Partial Substitution

I Guess that the solution is kn log n (logarithm to the base 2).

I Substitute guess into the recurrence relation to check what value
of k will satisfy the recurrence relation.

I k ≥ c will work.

I Divide into q sub-problems of size n/2 and merge in O(n) time.
Two distinct cases: q = 1 and q > 2.

I Divide into two sub-problems of size n/2 and merge in O(n2) time.
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Divide and Conquer Algorithms

I Study three divide and conquer algorithms:
I Counting inversions.
I Finding the closest pair of points.
I Integer multiplication.

I First two problems use clever conquer strategies.

I Third problem uses a clever divide strategy.
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Motivation

I Collaborative filtering match one user’s preferences to those of
other users.

I Meta-search engines merge results of multiple search engines to
into a better search result.

I Fundamental question: how do we compare a pair of rankings?
I Suggestion: two rankings are very similar if they have

few inversions .
I Assume one ranking is the ordered list of integers from 1 to n.
I The other ranking is a permutation a1, a2, . . . , an of the integers

from 1 to n.
I The second ranking has an inversion if there exist i , j such that

i < j but ai > aj .
I The number of inversions s is a measure of the difference between

the rankings.
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Counting Inversions
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Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .
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Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .
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5− 4, 5− 2, 4− 2, 8− 2, 10− 2
6− 3, 9− 3, 9− 7, 12− 3, 12−
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Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .

1 5 4 8 10 2 6 9 12 11 3 7

1 5 4 8 10 2 6 9 12 11 3 7

5− 4, 5− 2, 4− 2, 8− 2, 10− 2
6− 3, 9− 3, 9− 7, 12− 3, 12−

7, 12 − 11, 11 − 3, 11 − 7

5− 3, 4− 3, 8− 6, 8− 3, 8− 7, 10− 6, 10− 9, 10− 3, 10− 7



Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers?

Ω(n2).
We cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time.Can we modify
the Mergesort algorithm to count inversions ?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.

3. Recursively count the number of inversions in B. and one element
in B.
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Key idea : problem is much easier if A and B are sorted !



Counting Inversions: Conquer Step
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Counting Inversions: Final Algorithm
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Algorithm: Sort and count
input : The list L of elements
output: The number of inversion and the sorted list L

1 if |L| = 1 then
2 there is no inversions;
3 else
4 Divide the list into two halves: A and B ;
5 (rA,A) = sort-and-count(A);
6 (rB ,B) = sort-and-count(B);
7 (r , L) = merge-and-count(A,B);
8 end
9 r = rA + rB + r
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Algorithm: Sort and count
input : The list L of elements
output: The number of inversion and the sorted list L

1 if |L| = 1 then
2 there is no inversions;
3 else
4 Divide the list into two halves: A and B ;
5 (rA,A) = sort-and-count(A);
6 (rB ,B) = sort-and-count(B);
7 (r , L) = merge-and-count(A,B);
8 end
9 r = rA + rB + r

Running time T (n) of the algorithm is O(n log n) because
T (n) ≤ 2T (n/2) + O(n).
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Finding element
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Let A be an array with n numbers. Design a divide-and-conquer
algorithm for finding the position of the largest element in the
array A.

11 12 7 4 8 5 9 3



Finding element
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Let A be an array with n numbers. Design a divide-and-conquer
algorithm for finding both the smallest and largest elements in
the array A.

11 12 7 4 8 5 9 3



Tromino puzzle
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Tromino puzzle

A tromino is an L-shaped tile formed by adjacent 1-by-1 squares. The
problem is to cover any 2n-by-2n chessboard with one missing square
(anywhere on the board) with trominoes. Trominoes should cover all the
squares of the board except the missing one with no overlaps.
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Integer Multiplication

Multiply Integers

INSTANCE Two n-digit binary integers x and y

SOLUTION The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n
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Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer

by splitting each number into first
n/2 bits and last n/2 bits.

I Let x be split into x0 ( lower-order bits) and x1 ( higher-order

bits) and y into y0 ( lower-order bits) and y1 ( higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)
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Improving the Algorithm
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I Four sub-problems lead to an O(n2) algorithm.

I What is the running time T (n)?
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Final Algorithm
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Algorithm design and analysis

— Closest Pair of Points —
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Computational Geometry

I Algorithms for geometric objects : points, lines, segments,
triangles, spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.

I Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.
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Closest Pair: Set-up

Silvio Guimarães Divide and conquer 28 de 29

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

I Use d(pi , pj) to denote the Euclidean distance between pi and pj .

I Goal : find the pair of points pi and pj that minimize d(pi , pj).
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I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj .

I Goal : find the pair of points pi and pj that minimize d(pi , pj).
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Closest Pair: Algorithm Skeleton

Silvio Guimarães Divide and conquer 29 de 29

1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.
3. Let δ1 be the distance computed for Q, δ2 be the distance

computed for R , and δ = min(δ1, δ2) .

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R ,
d(q, r) < δ and d(q, r) is the smallest possible.

I How do we implement this step in O(n) time?
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1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.
3. Let δ1 be the distance computed for Q, δ2 be the distance

computed for R , and δ = min(δ1, δ2) .
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I How do we implement this step in O(n) time?

Assignment

Implement the problem to find the closest pair in a plane.
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