
Algorithm design and analysis

— Divide and conquer —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm design and analysis

— Mergesort —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Divide and Conquer

I Break up a problem into several parts .

I Solve each part recursively .
I Solve base cases by brute force.
I Efficiently combine solutions for sub-problems into final solution.
I Common use:

I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

Silvio Guimarães Divide and conquer 3 de 29

Divide and Conquer

I Break up a problem into several parts .

I Solve each part recursively .

I Solve base cases by brute force.
I Efficiently combine solutions for sub-problems into final solution.
I Common use:

I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

Silvio Guimarães Divide and conquer 3 de 29

Divide and Conquer

I Break up a problem into several parts .

I Solve each part recursively .
I Solve base cases by brute force.

I Efficiently combine solutions for sub-problems into final solution.
I Common use:

I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

Silvio Guimarães Divide and conquer 3 de 29

Divide and Conquer

I Break up a problem into several parts .

I Solve each part recursively .
I Solve base cases by brute force.
I Efficiently combine solutions for sub-problems into final solution.

I Common use:
I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

Silvio Guimarães Divide and conquer 3 de 29

Divide and Conquer

I Break up a problem into several parts .

I Solve each part recursively .
I Solve base cases by brute force.
I Efficiently combine solutions for sub-problems into final solution.
I Common use:

I Partition problem into two equal sub-problems of size n/2.
I Solve each part recursively.
I Combine the two solutions in O(n) time.
I Resulting running time is O(n log n).

Silvio Guimarães Divide and conquer 3 de 29

Mergesort

Silvio Guimarães Divide and conquer 4 de 29

Sort

INSTANCE Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such
that yi ≤ yi+1, for all 1 ≤ i < n.

Mergesort

Silvio Guimarães Divide and conquer 4 de 29

Sort

INSTANCE Nonempty list L = x1, x2, . . . , xn of integers.

SOLUTION A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such
that yi ≤ yi+1, for all 1 ≤ i < n.

I Mergesort is a divide-and-conquer algorithm for sorting.
1. Partition L into two lists A and B of size bn/2c and dn/2e

respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3 4

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3 4 5

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3 4 5 6

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3 4 5 6 7

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3 4 5 6 7 8

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

1 4 8 9 3 5 6 7

1 3 4 5 6 7 8 9

Merging Two Sorted Lists

Silvio Guimarães Divide and conquer 5 de 29

Algorithm: Intercalation
input : A = a1, a2, . . . , ak and B = b1, b2, . . . bl .
output: The distances of the vertices from s

1 Maintain a current pointer for each list;
2 Initialise each pointer to the front of the list;

3 while both lists are nonempty do
4 Let ai and bj be the elements pointed to by the

current pointers;
Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller
element belonged to;

6 end
7 Append the rest of the non-empty list to the output.

Running time of this algorithm is O(k + l) .

Analysing Mergesort

I Worst-case running time for n elements (T (n)) is at most the
sum of the worst-case running time for bn/2c elements, for dn/2e
elements, for splitting the input into two lists, and for merging two
sorted lists.

I Assume n is a power of 2.

T (n) ≤ 2T (n/2) + cn, n > 2
T (2) ≤ c

I Three basic ways of solving this recurrence relation:
1. “Unroll’ ’ the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in O() form and substitute into recurrence to

determine the constants.

Silvio Guimarães Divide and conquer 6 de 29

Analysing Mergesort

I Worst-case running time for n elements (T (n)) is at most the
sum of the worst-case running time for bn/2c elements, for dn/2e
elements, for splitting the input into two lists, and for merging two
sorted lists.

I Assume n is a power of 2.

T (n) ≤ 2T (n/2) + cn, n > 2
T (2) ≤ c

I Three basic ways of solving this recurrence relation:
1. “Unroll’ ’ the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in O() form and substitute into recurrence to

determine the constants.

Silvio Guimarães Divide and conquer 6 de 29

Analysing Mergesort

I Worst-case running time for n elements (T (n)) is at most the
sum of the worst-case running time for bn/2c elements, for dn/2e
elements, for splitting the input into two lists, and for merging two
sorted lists.

I Assume n is a power of 2.

T (n) ≤ 2T (n/2) + cn, n > 2
T (2) ≤ c

I Three basic ways of solving this recurrence relation:
1. “Unroll’ ’ the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in O() form and substitute into recurrence to

determine the constants.

Silvio Guimarães Divide and conquer 6 de 29

Unrolling the recurrence

I Recursion tree has log n levels .
I Total work done at each level is cn.
I Running time of the algorithm is cn log n.

Silvio Guimarães Divide and conquer 7 de 29

Substituting a Solution into the Recurrence

I Guess that the solution is cn log n (logarithm to the base 2).

I Use induction to check if the solution satisfies the recurrence
relation.

I Base case: n = 2. Is T (2) = c ≤ 2c log 2? Yes.
I Inductive step: assume T (m) ≤ cm log2 m for all m < n.

Therefore, T (n/2) ≤ (cn/2) log n − cn/2.

T (n) ≤ 2T (n/2) + cn

≤ 2 ((cn/2) log n − cn/2) + cn

= cn log n

Silvio Guimarães Divide and conquer 8 de 29

Partial Substitution

I Guess that the solution is kn log n (logarithm to the base 2).

I Substitute guess into the recurrence relation to check what value
of k will satisfy the recurrence relation.

I k ≥ c will work.

I Divide into q sub-problems of size n/2 and merge in O(n) time.
Two distinct cases: q = 1 and q > 2.

I Divide into two sub-problems of size n/2 and merge in O(n2) time.

Silvio Guimarães Divide and conquer 9 de 29

Partial Substitution

I Guess that the solution is kn log n (logarithm to the base 2).

I Substitute guess into the recurrence relation to check what value
of k will satisfy the recurrence relation.

I k ≥ c will work.

I Divide into q sub-problems of size n/2 and merge in O(n) time.
Two distinct cases: q = 1 and q > 2.

I Divide into two sub-problems of size n/2 and merge in O(n2) time.

Silvio Guimarães Divide and conquer 9 de 29

Algorithm design and analysis

— Counting inversions —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Divide and Conquer Algorithms

I Study three divide and conquer algorithms:
I Counting inversions.
I Finding the closest pair of points.
I Integer multiplication.

I First two problems use clever conquer strategies.

I Third problem uses a clever divide strategy.

Silvio Guimarães Divide and conquer 11 de 29

Divide and Conquer Algorithms

I Study three divide and conquer algorithms:
I Counting inversions.
I Finding the closest pair of points.
I Integer multiplication.

I First two problems use clever conquer strategies.

I Third problem uses a clever divide strategy.

Silvio Guimarães Divide and conquer 11 de 29

Motivation

I Collaborative filtering match one user’s preferences to those of
other users.

I Meta-search engines merge results of multiple search engines to
into a better search result.

I Fundamental question: how do we compare a pair of rankings?
I Suggestion: two rankings are very similar if they have

few inversions .
I Assume one ranking is the ordered list of integers from 1 to n.
I The other ranking is a permutation a1, a2, . . . , an of the integers

from 1 to n.
I The second ranking has an inversion if there exist i , j such that

i < j but ai > aj .
I The number of inversions s is a measure of the difference between

the rankings.

Silvio Guimarães Divide and conquer 12 de 29

Motivation

I Collaborative filtering match one user’s preferences to those of
other users.

I Meta-search engines merge results of multiple search engines to
into a better search result.

I Fundamental question: how do we compare a pair of rankings?
I Suggestion: two rankings are very similar if they have

few inversions .
I Assume one ranking is the ordered list of integers from 1 to n.
I The other ranking is a permutation a1, a2, . . . , an of the integers

from 1 to n.
I The second ranking has an inversion if there exist i , j such that

i < j but ai > aj .
I The number of inversions s is a measure of the difference between

the rankings.

Silvio Guimarães Divide and conquer 12 de 29

Motivation

I Collaborative filtering match one user’s preferences to those of
other users.

I Meta-search engines merge results of multiple search engines to
into a better search result.

I Fundamental question: how do we compare a pair of rankings?

I Suggestion: two rankings are very similar if they have
few inversions .

I Assume one ranking is the ordered list of integers from 1 to n.
I The other ranking is a permutation a1, a2, . . . , an of the integers

from 1 to n.
I The second ranking has an inversion if there exist i , j such that

i < j but ai > aj .
I The number of inversions s is a measure of the difference between

the rankings.

Silvio Guimarães Divide and conquer 12 de 29

Motivation

I Collaborative filtering match one user’s preferences to those of
other users.

I Meta-search engines merge results of multiple search engines to
into a better search result.

I Fundamental question: how do we compare a pair of rankings?
I Suggestion: two rankings are very similar if they have

few inversions .

I Assume one ranking is the ordered list of integers from 1 to n.
I The other ranking is a permutation a1, a2, . . . , an of the integers

from 1 to n.
I The second ranking has an inversion if there exist i , j such that

i < j but ai > aj .
I The number of inversions s is a measure of the difference between

the rankings.

Silvio Guimarães Divide and conquer 12 de 29

Motivation

I Collaborative filtering match one user’s preferences to those of
other users.

I Meta-search engines merge results of multiple search engines to
into a better search result.

I Fundamental question: how do we compare a pair of rankings?
I Suggestion: two rankings are very similar if they have

few inversions .
I Assume one ranking is the ordered list of integers from 1 to n.
I The other ranking is a permutation a1, a2, . . . , an of the integers

from 1 to n.
I The second ranking has an inversion if there exist i , j such that

i < j but ai > aj .
I The number of inversions s is a measure of the difference between

the rankings.

Silvio Guimarães Divide and conquer 12 de 29

Counting Inversions

Silvio Guimarães Divide and conquer 13 de 29

Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .

Counting Inversions

Silvio Guimarães Divide and conquer 13 de 29

Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .

1 2 3 4 5

2 4 1 3 5

Counting Inversions

Silvio Guimarães Divide and conquer 13 de 29

Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .

1 5 4 8 10 2 6 9 12 11 3 7

1 5 4 8 10 2 6 9 12 11 3 7

5− 4, 5− 2, 4− 2, 8− 2, 10− 2
6− 3, 9− 3, 9− 7, 12− 3, 12−

7, 12 − 11, 11 − 3, 11 − 7

Counting Inversions

Silvio Guimarães Divide and conquer 13 de 29

Counting Inversions

INSTANCE A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION The number of pairs (i , j), 1 ≤ i < j ≤ n such
ai > aj .

1 5 4 8 10 2 6 9 12 11 3 7

1 5 4 8 10 2 6 9 12 11 3 7

5− 4, 5− 2, 4− 2, 8− 2, 10− 2
6− 3, 9− 3, 9− 7, 12− 3, 12−

7, 12 − 11, 11 − 3, 11 − 7

5− 3, 4− 3, 8− 6, 8− 3, 8− 7, 10− 6, 10− 9, 10− 3, 10− 7

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers?

Ω(n2).
We cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time.Can we modify
the Mergesort algorithm to count inversions ?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.

3. Recursively count the number of inversions in B. and one element
in B.

Silvio Guimarães Divide and conquer 14 de 29

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2).
We cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time.Can we modify
the Mergesort algorithm to count inversions ?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.

3. Recursively count the number of inversions in B. and one element
in B.

Silvio Guimarães Divide and conquer 14 de 29

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2).
We cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time.Can we modify
the Mergesort algorithm to count inversions ?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.

3. Recursively count the number of inversions in B. and one element
in B.

Silvio Guimarães Divide and conquer 14 de 29

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2).
We cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time.Can we modify
the Mergesort algorithm to count inversions ?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.

3. Recursively count the number of inversions in B. and one element
in B.

Silvio Guimarães Divide and conquer 14 de 29

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2).
We cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time.Can we modify
the Mergesort algorithm to count inversions ?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.

3. Recursively count the number of inversions in B. and one element
in B.

Silvio Guimarães Divide and conquer 14 de 29

Key idea : problem is much easier if A and B are sorted !

Counting Inversions: Conquer Step

Silvio Guimarães Divide and conquer 15 de 29

Counting Inversions: Final Algorithm

Silvio Guimarães Divide and conquer 16 de 29

Algorithm: Sort and count
input : The list L of elements
output: The number of inversion and the sorted list L

1 if |L| = 1 then
2 there is no inversions;
3 else
4 Divide the list into two halves: A and B ;
5 (rA,A) = sort-and-count(A);
6 (rB ,B) = sort-and-count(B);
7 (r , L) = merge-and-count(A,B);
8 end
9 r = rA + rB + r

Counting Inversions: Final Algorithm

Silvio Guimarães Divide and conquer 16 de 29

Algorithm: Sort and count
input : The list L of elements
output: The number of inversion and the sorted list L

1 if |L| = 1 then
2 there is no inversions;
3 else
4 Divide the list into two halves: A and B ;
5 (rA,A) = sort-and-count(A);
6 (rB ,B) = sort-and-count(B);
7 (r , L) = merge-and-count(A,B);
8 end
9 r = rA + rB + r

Running time T (n) of the algorithm is O(n log n) because
T (n) ≤ 2T (n/2) + O(n).

Algorithm design and analysis

— Some exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Finding element

Silvio Guimarães Divide and conquer 18 de 29

Let A be an array with n numbers. Design a divide-and-conquer
algorithm for finding the position of the largest element in the
array A.

11 12 7 4 8 5 9 3

Finding element

Silvio Guimarães Divide and conquer 19 de 29

Let A be an array with n numbers. Design a divide-and-conquer
algorithm for finding both the smallest and largest elements in
the array A.

11 12 7 4 8 5 9 3

Tromino puzzle

Silvio Guimarães Divide and conquer 20 de 29

Tromino puzzle

A tromino is an L-shaped tile formed by adjacent 1-by-1 squares. The
problem is to cover any 2n-by-2n chessboard with one missing square
(anywhere on the board) with trominoes. Trominoes should cover all the
squares of the board except the missing one with no overlaps.

Algorithm design and analysis

— Integer Multiplication —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Integer Multiplication

Multiply Integers

INSTANCE Two n-digit binary integers x and y

SOLUTION The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n

Silvio Guimarães Divide and conquer 22 de 29

Integer Multiplication

Multiply Integers

INSTANCE Two n-digit binary integers x and y

SOLUTION The product xy

I Multiply two n-digit integers.

I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n

Silvio Guimarães Divide and conquer 22 de 29

Integer Multiplication

Multiply Integers

INSTANCE Two n-digit binary integers x and y

SOLUTION The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.

I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n

Silvio Guimarães Divide and conquer 22 de 29

Integer Multiplication

Multiply Integers

INSTANCE Two n-digit binary integers x and y

SOLUTION The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n

Silvio Guimarães Divide and conquer 22 de 29

Integer Multiplication

Multiply Integers

INSTANCE Two n-digit binary integers x and y

SOLUTION The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes O(n2) operations. Size of the

input is not 2 but 2n

Silvio Guimarães Divide and conquer 22 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer

by splitting each number into first
n/2 bits and last n/2 bits.

I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer by splitting each number into first

n/2 bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy =

(x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer by splitting each number into first

n/2 bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer by splitting each number into first

n/2 bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer by splitting each number into first

n/2 bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer by splitting each number into first

n/2 bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Divide-and-Conquer Algorithm

I Assume integers are binary .
I Let us use divide and conquer by splitting each number into first

n/2 bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order

bits) and y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1, x1y0,
x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

Silvio Guimarães Divide and conquer 23 de 29

Improving the Algorithm

Silvio Guimarães Divide and conquer 24 de 29

I Four sub-problems lead to an O(n2) algorithm.

I What is the running time T (n)?

Improving the Algorithm

Silvio Guimarães Divide and conquer 24 de 29

I Four sub-problems lead to an O(n2) algorithm.

I What is the running time T (n)?

Improving the Algorithm

Silvio Guimarães Divide and conquer 24 de 29

I Four sub-problems lead to an O(n2) algorithm.

I What is the running time T (n)?

Improving the Algorithm

Silvio Guimarães Divide and conquer 24 de 29

I Four sub-problems lead to an O(n2) algorithm.
I What is the running time T (n)?

Final Algorithm

Silvio Guimarães Divide and conquer 25 de 29

Algorithm design and analysis

— Closest Pair of Points —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Computational Geometry

I Algorithms for geometric objects : points, lines, segments,
triangles, spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.

I Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.

Silvio Guimarães Divide and conquer 27 de 29

Computational Geometry

I Algorithms for geometric objects : points, lines, segments,
triangles, spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.

I Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.

Silvio Guimarães Divide and conquer 27 de 29

Computational Geometry

I Algorithms for geometric objects : points, lines, segments,
triangles, spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.

I Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.

Silvio Guimarães Divide and conquer 27 de 29

Closest Pair: Set-up

Silvio Guimarães Divide and conquer 28 de 29

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi).

I Use d(pi , pj) to denote the Euclidean distance between pi and pj .

I Goal : find the pair of points pi and pj that minimize d(pi , pj).

Closest Pair: Set-up

Silvio Guimarães Divide and conquer 28 de 29

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj .

I Goal : find the pair of points pi and pj that minimize d(pi , pj).

Closest Pair: Set-up

Silvio Guimarães Divide and conquer 28 de 29

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj .

I Goal : find the pair of points pi and pj that minimize d(pi , pj).

Closest Pair: Set-up

Silvio Guimarães Divide and conquer 28 de 29

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj .

I Goal : find the pair of points pi and pj that minimize d(pi , pj).

δ

Closest Pair: Algorithm Skeleton

Silvio Guimarães Divide and conquer 29 de 29

1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.
3. Let δ1 be the distance computed for Q, δ2 be the distance

computed for R , and δ = min(δ1, δ2) .

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R ,
d(q, r) < δ and d(q, r) is the smallest possible.

I How do we implement this step in O(n) time?

Closest Pair: Algorithm Skeleton

Silvio Guimarães Divide and conquer 29 de 29

1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.

3. Let δ1 be the distance computed for Q, δ2 be the distance
computed for R , and δ = min(δ1, δ2) .

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R ,
d(q, r) < δ and d(q, r) is the smallest possible.

I How do we implement this step in O(n) time?

Closest Pair: Algorithm Skeleton

Silvio Guimarães Divide and conquer 29 de 29

1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.
3. Let δ1 be the distance computed for Q, δ2 be the distance

computed for R , and δ = min(δ1, δ2) .

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R ,
d(q, r) < δ and d(q, r) is the smallest possible.

I How do we implement this step in O(n) time?

Closest Pair: Algorithm Skeleton

Silvio Guimarães Divide and conquer 29 de 29

1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.
3. Let δ1 be the distance computed for Q, δ2 be the distance

computed for R , and δ = min(δ1, δ2) .

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R ,
d(q, r) < δ and d(q, r) is the smallest possible.

I How do we implement this step in O(n) time?

Closest Pair: Algorithm Skeleton

Silvio Guimarães Divide and conquer 29 de 29

1. Divide P into two sets Q and R of n/2 points such that each
point in Q has x-coordinate less than any point in R .

2. Recursively compute closest pair in Q and in R , respectively.
3. Let δ1 be the distance computed for Q, δ2 be the distance

computed for R , and δ = min(δ1, δ2) .

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R ,
d(q, r) < δ and d(q, r) is the smallest possible.

I How do we implement this step in O(n) time?

Assignment

Implement the problem to find the closest pair in a plane.

	Mergesort
	Counting inversions
	Some exercises
	Finding largest element
	Finding smallest and largest element
	Tromino puzzle

	Integer Multiplication
	Closest Pair of Points

