

Algorithm design and analysis — Divide and conquer —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Algorithm design and analysis

— Mergesort —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

 \triangleright Solve each part recursively.

- Break up a problem into several parts.
- \triangleright Solve each part recursively.
- \triangleright Solve base cases by brute force.
- Break up a problem into several parts.
- \triangleright Solve each part recursively.
- \blacktriangleright Solve base cases by brute force.
- \triangleright Efficiently combine solutions for sub-problems into final solution.
- Break up a problem into several parts.
- \triangleright Solve each part recursively.
- \triangleright Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- \triangleright Common use:
	- \triangleright Partition problem into two equal sub-problems of size $n/2$.
	- \triangleright Solve each part recursively.
	- \triangleright Combine the two solutions in $O(n)$ time.
	- Resulting running time is $O(n \log n)$.

SORT

INSTANCE Nonempty list $L = x_1, x_2, ..., x_n$ of integers.

SOLUTION A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $y_i \le y_{i+1}$, for all $1 \le i \le n$.

SORT

INSTANCE Nonempty list $L = x_1, x_2, ..., x_n$ of integers.

SOLUTION A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $v_i \le v_{i+1}$, for all $1 \le i \le n$.

 \triangleright Mergesort is a divide-and-conquer algorithm for sorting.

- 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

$$
\begin{array}{c|cc} \hline 1 & 4 & 8 & 9 \end{array}
$$

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

$$
\begin{array}{c|cc} \hline 1 & 4 & 8 & 9 \end{array}
$$

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

4 Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

Algorithm: Intercalation

input : $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$. output: The distances of the vertices from s

- ¹ Maintain a current pointer for each list;
- ² Initialise each pointer to the front of the list;

³ while both lists are nonempty do

Let a_i and b_i be the elements pointed to by the current pointers;

Append the smaller of the two to the output list;

5 Advance the current pointer in the list that the smaller element belonged to;

6 end

⁷ Append the rest of the non-empty list to the output.

Running time of this algorithm is $O(k + 1)$.

Analysing Mergesort

- \triangleright Worst-case running time for *n* elements $(T(n))$ is at most the sum of the worst-case running time for $n/2$ elements, for $n/2$ elements, for splitting the input into two lists, and for merging two sorted lists.
- \triangleright Assume *n* is a power of 2.
- \triangleright Worst-case running time for *n* elements $(T(n))$ is at most the sum of the worst-case running time for $n/2$ elements, for $n/2$ elements, for splitting the input into two lists, and for merging two sorted lists.
- Assume *n* is a power of 2.

 $T(n) \leq 2T(n/2) + cn, n > 2$ $T(2) < c$

- \triangleright Worst-case running time for *n* elements $(T(n))$ is at most the sum of the worst-case running time for $n/2$ elements, for $n/2$ elements, for splitting the input into two lists, and for merging two sorted lists.
- Assume *n* is a power of 2.

 $T(n) \leq 2T(n/2) + cn, n > 2$ $T(2) < c$

 \triangleright Three basic ways of solving this recurrence relation:

- 1. "Unroll'' the recurrence (somewhat informal method).
- 2. Guess a solution and substitute into recurrence to check.
- 3. Guess solution in $O()$ form and substitute into recurrence to determine the constants.
- Recursion tree has $log n$ levels.
- \triangleright Total work done at each level is cn.
- \triangleright Running time of the algorithm is cn log n.

Substituting a Solution into the Recurrence

- **If Guess** that the solution is cn log n (logarithm to the base 2).
- \triangleright Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n = 2$. Is $T(2) = c \le 2c \log 2$? Yes.
- Inductive step: assume $T(m) \leq cm \log_2 m$ for all $m < n$. Therefore, $T(n/2) < (cn/2) \log n - cn/2$.

$$
T(n) \leq 2T(n/2) + cn
$$

\n
$$
\leq 2((cn/2) \log n - cn/2) + cn
$$

\n
$$
= cn \log n
$$

- **In Guess** that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $\blacktriangleright k > c$ will work.
- **Guess** that the solution is $kn \log n$ (logarithm to the base 2).
- **I** Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $\blacktriangleright k > c$ will work.
- \triangleright Divide into q sub-problems of size $n/2$ and merge in $O(n)$ time. Two distinct cases: $q = 1$ and $q > 2$.
- Divide into two sub-problems of size $n/2$ and merge in $O(n^2)$ time.

Algorithm design and analysis

— Counting inversions —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

- \triangleright Study three divide and conquer algorithms:
	- \triangleright Counting inversions.
	- \blacktriangleright Finding the closest pair of points.
	- \blacktriangleright Integer multiplication.
- \triangleright First two problems use clever conquer strategies.
- \triangleright Study three divide and conquer algorithms:
	- \triangleright Counting inversions.
	- \blacktriangleright Finding the closest pair of points.
	- \blacktriangleright Integer multiplication.
- \triangleright First two problems use clever conquer strategies.
- \triangleright Third problem uses a clever divide strategy.

In Collaborative filtering match one user's preferences to those of other users.

- \triangleright Collaborative filtering match one user's preferences to those of other users.
- \triangleright Meta-search engines merge results of multiple search engines to into a better search result.
- \triangleright Collaborative filtering match one user's preferences to those of other users.
- **Meta-search engines** merge results of multiple search engines to into a better search result.
- Fundamental question: how do we compare a pair of rankings?
- ^I Collaborative filtering match one user's preferences to those of other users.
- **I Meta-search engines** merge results of multiple search engines to into a better search result.
- In Fundamental question: how do we compare a pair of rankings?
- \triangleright Suggestion: two rankings are very similar if they have few inversions .
- ^I Collaborative filtering match one user's preferences to those of other users.
- **Meta-search engines** merge results of multiple search engines to into a better search result.
- In Fundamental question: how do we compare a pair of rankings?

 \triangleright Suggestion: two rankings are very similar if they have few inversions .

- Assume one ranking is the ordered list of integers from 1 to n .
- \triangleright The other ranking is a permutation a_1, a_2, \ldots, a_n of the integers from 1 to n
- \triangleright The second ranking has an inversion if there exist *i, j* such that $i < j$ but $a_i > a_j$.
- \triangleright The number of inversions s is a measure of the difference between the rankings.
- **INSTANCE** A list $L = x_1, x_2, ..., x_n$ of distinct integers between 1 and n .
- **SOLUTION** The number of pairs (i, j) , $1 \le i \le j \le n$ such $a_i > a_j$.

- **INSTANCE** A list $L = x_1, x_2, ..., x_n$ of distinct integers between 1 and n .
- **SOLUTION** The number of pairs (i, j) , $1 \le i < j \le n$ such $a_i > a_j$.

- **INSTANCE** A list $L = x_1, x_2, ..., x_n$ of distinct integers between 1 and n .
- **SOLUTION** The number of pairs (i, j) , $1 \le i \le j \le n$ such $a_i > a_j$.

- **INSTANCE** A list $L = x_1, x_2, ..., x_n$ of distinct integers between 1 and n .
- **SOLUTION** The number of pairs (i, j) , $1 \le i \le j \le n$ such $a_i > a_j$.

\blacktriangleright How many inversions can be there in a list of n numbers?

► How many inversions can be there in a list of *n* numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.

- ► How many inversions can be there in a list of *n* numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the **Mergesort** algorithm to count inversions?
- ► How many inversions can be there in a list of *n* numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the **Mergesort** algorithm to count inversions?
- \blacktriangleright Candidate algorithm:
	- 1. Partition L into two lists A and B of size $n/2$ each.
	- 2. Recursively count the number of inversions in A.
	- 3. Recursively count the number of inversions in B. and one element in B.
- ► How many inversions can be there in a list of *n* numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the **Mergesort** algorithm to count inversions?
- \blacktriangleright Candidate algorithm:
	- 1. Partition L into two lists A and B of size $n/2$ each.
	- 2. Recursively count the number of inversions in A.
	- 3. Recursively count the number of inversions in B. and one element in B.

Key idea : problem is much easier if A and B are sorted !

Counting Inversions: Conquer Step

Counting Inversions: Final Algorithm

```
Algorithm: Sort and count
  input : The list L of elements
  output: The number of inversion and the sorted list L
1 if |L| = 1 then
2 there is no inversions:
3 else
     Divide the list into two halves: A and B;
5 (r_A, A) = sort-and-count(A);
6 (r_B, B) = sort-and-count(B);
\tau (r, L) = merge-and-count(A, B);
8 end
9 r = r_A + r_B + r
```
Counting Inversions: Final Algorithm

```
Algorithm: Sort and count
  input : The list L of elements
  output: The number of inversion and the sorted list L
1 if |L| = 1 then
2 there is no inversions:
3 else
     Divide the list into two halves: A and B;
5 (r_A, A) = sort-and-count(A);
6 (r_B, B) = sort-and-count(B);
     (r, L) = merge-and-count(A, B);
8 end
9 r = r_A + r_B + r
```
Running time $T(n)$ of the algorithm is $O(n \log n)$ because $T(n) \leq 2T(n/2) + O(n).$

Algorithm design and analysis

— Some exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Let A be an array with n numbers. Design a divide-and-conquer algorithm for finding the position of the largest element in the array A.

Let A be an array with n numbers. Design a divide-and-conquer algorithm for finding both the smallest and largest elements in the array A.

Tromino puzzle

Tromino puzzle

A tromino is an *L*-shaped tile formed by adjacent 1-by-1 squares. The problem is to cover any 2ⁿ-by-2ⁿ chessboard with one missing square (anywhere on the board) with trominoes. Trominoes should cover all the squares of the board except the missing one with no overlaps.

Algorithm design and analysis

— Integer Multiplication —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

INSTANCE Two *n*-digit binary integers x and y

INSTANCE Two *n*-digit binary integers x and y

SOLUTION The product xy

 \blacktriangleright Multiply two *n*-digit integers.

INSTANCE Two *n*-digit binary integers x and y

- \blacktriangleright Multiply two *n*-digit integers.
- Result has at most $2n$ digits.

INSTANCE Two *n*-digit binary integers x and y

- \blacktriangleright Multiply two *n*-digit integers.
- Result has at most $2n$ digits.
- \triangleright Algorithm we learnt in school takes

INSTANCE Two *n*-digit binary integers x and y

- \blacktriangleright Multiply two *n*-digit integers.
- Result has at most $2n$ digits.
- Algorithm we learnt in school takes $O(n^2)$ operations. Size of the input is not 2 but 2n

- \triangleright Assume integers are binary.
- \blacktriangleright Let us use divide and conquer

- Assume integers are binary.
- \triangleright Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Ex be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

 $xy =$

- Assume integers are binary.
- \triangleright Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- Ex be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)
$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- Assume integers are binary.
- \triangleright Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- In Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)
$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

Each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute x_1y_1, x_1y_0 , x_0y_1 , and x_0y_0 recursively, and merge the answers in $O(n)$ time.

- Assume integers are binary.
- \triangleright Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- In Let X be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)
$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- Each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute x_1y_1, x_1y_0 , x_0y_1 , and x_0y_0 recursively, and merge the answers in $O(n)$ time.
- \triangleright What is the running time $T(n)$?

- Assume integers are binary.
- \triangleright Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- In Let X be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)
$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- Each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute x_1y_1, x_1y_0 , x_0y_1 , and x_0y_0 recursively, and merge the answers in $O(n)$ time.
- \triangleright What is the running time $T(n)$?

$$
T(n) \leq 4T(n/2) + cn
$$

- Assume integers are binary.
- \triangleright Let us use divide and conquer by splitting each number into first $n/2$ bits and last $n/2$ bits.
- In Let X be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$
xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)
$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- Each of x_1, x_0, y_1, y_0 has $n/2$ bits, so we can compute x_1y_1, x_1y_0 , x_0y_1 , and x_0y_0 recursively, and merge the answers in $O(n)$ time.
- \triangleright What is the running time $T(n)$?

$$
T(n) \leq 4T(n/2) + cn
$$

$$
\leq O(n^2)
$$

Four sub-problems lead to an $O(n^2)$ algorithm.

Four sub-problems lead to an $O(n^2)$ algorithm.

Four sub-problems lead to an $O(n^2)$ algorithm.

- Four sub-problems lead to an $O(n^2)$ algorithm.
- \triangleright What is the running time $T(n)$?

Final Algorithm

Algorithm design and analysis

— Closest Pair of Points —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Computational Geometry

- \triangleright Algorithms for geometric objects : points, lines, segments, triangles, spheres, polyhedra, ldots.
- \triangleright Started in 1975 by Shamos and Hoey.
- \triangleright Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .
Computational Geometry

- \triangleright Algorithms for geometric objects : points, lines, segments, triangles, spheres, polyhedra, ldots.
- \triangleright Started in 1975 by Shamos and Hoey.
- \triangleright Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in P that are the closest to each other.

Computational Geometry

- \triangleright Algorithms for geometric objects : points, lines, segments, triangles, spheres, polyhedra, ldots.
- \triangleright Started in 1975 by Shamos and Hoey.
- \triangleright Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in P that are the closest to each other.

- ► At first glance, it seems any algorithm must take $\Omega(n^2)$) time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

• Let
$$
P = \{p_1, p_2, ..., p_n\}
$$
 with $p_i = (x_i, y_i)$.

- In Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- \blacktriangleright Use $d(p_i,p_j)$ to denote the Euclidean distance between p_i and $p_j.$

- In Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- \blacktriangleright Use $d(p_i,p_j)$ to denote the Euclidean distance between p_i and $p_j.$
- \blacktriangleright **Goal**: find the pair of points p_i and p_j that **minimize** $d(p_i, p_j)$.

- In Let $P = \{p_1, p_2, \ldots, p_n\}$ with $p_i = (x_i, y_i)$.
- \blacktriangleright Use $d(p_i,p_j)$ to denote the Euclidean distance between p_i and $p_j.$
- \blacktriangleright **Goal**: find the pair of points p_i and p_j that **minimize** $d(p_i, p_j)$.

1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R .

- 1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R .
- 2. Recursively compute closest pair in Q and in R , respectively.

- 1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R .
- 2. Recursively compute closest pair in Q and in R , respectively.
- 3. Let δ_1 be the distance computed for Q , δ_2 be the distance computed for R, and $\delta = \min(\delta_1, \delta_2)$.

- 1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R .
- 2. Recursively compute closest pair in Q and in R, respectively.
- 3. Let δ_1 be the distance computed for Q , δ_2 be the distance computed for R, and $\delta = \min(\delta_1, \delta_2)$.
- 4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and $d(q, r)$ is the smallest possible.

How do we implement this step in $O(n)$ time?

- 1. Divide P into two sets Q and R of $n/2$ points such that each point in Q has x-coordinate less than any point in R .
- 2. Recursively compute closest pair in Q and in R , respectively.
- 3. Let δ_1 be the distance computed for Q , δ_2 be the distance computed for R, and $\delta = \min(\delta_1, \delta_2)$.
- 4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and $d(q, r)$ is the smallest possible.

 \blacktriangleright How do we implement this step in $O(n)$ time?

Assignment

Implement the problem to find the closest pair in a plane.