

Algorithm design and analysis

- Dynamic programming —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm design and analysis — Dynamic programming: fundamentals —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



independently, and combine solution to sub-problems to form solution to original problem.

independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming.

Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems

1. Goal: design efficient (polynomial-time) algorithms.

- 1. Goal: design efficient (polynomial-time) algorithms.
- 2. Greedy
 - ▶ Pro: natural approach to algorithm design.
 - ► Con: many greedy approaches a problem, but only some may work.
 - ► Con: many problems for which no greedy approach is known.

- 1. Goal: design efficient (polynomial-time) algorithms.
- 2. Greedy
 - ▶ Pro: natural approach to algorithm design.
 - ► Con: many greedy approaches a problem, but only some may work.
 - ► Con: many problems for which no greedy approach is known.
- 3. Divide and conquer
 - ▶ Pro: simple to develop algorithm skeleton.
 - Pro: usually reduces time for a problem known to be solvable in polynomial time.
 - Con: conquer step can be very hard to implement efficiently.

- 1. Goal: design efficient (polynomial-time) algorithms.
- 2. Greedy
 - ▶ Pro: natural approach to algorithm design.
 - ► Con: many greedy approaches a problem, but only some may work.
 - ► Con: many problems for which no greedy approach is known.
- 3. Divide and conquer
 - ▶ Pro: simple to develop algorithm skeleton.
 - Pro: usually reduces time for a problem known to be solvable in polynomial time.
 - Con: conquer step can be very hard to implement efficiently.
- 4. Dynamic programming
 - ► More powerful than greedy and divide-and-conquer strategies.
 - ► Implicitly explore space of all possible solutions.
 - Solve multiple sub-problems and build up correct solutions to larger and larger sub-problems.
 - Careful analysis needed to ensure number of sub-problems solved is polynomial in the size of the input.

 Bellman pioneered the systematic study of dynamic programming in the 1950s.

- Bellman pioneered the systematic study of dynamic programming in the 1950s.
- ► Dynamic programming = "planning over time."
- The Secretary of Defense at that time was hostile to mathematical research.
- ► Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to" Reference:
 - ▶ Bellman, R. E., Eye of the Hurricane, An Autobiography.

- Computational biology: Smith-Waterman algorithm for sequence alignment.
- Operations research: Bellman-Ford algorithm for shortest path routing in networks.
- ► Control theory: Viterbi algorithm for hidden Markov models.
- Computer science (theory, graphics, AI, ...): Unix diff command for comparing two files.

Algorithm design and analysis

— Weighted interval scheduling —

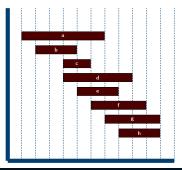
Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

INTERVAL SCHEDULING

INSTANCE Nonempty set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of *n* jobs.

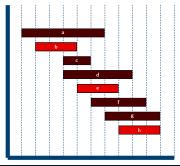
SOLUTION The largest subset of mutually compatible jobs.



INTERVAL SCHEDULING

INSTANCE Nonempty set $\{(s(i), f(i)), 1 \le i \le n\}$ of start and finish times of *n* jobs.

SOLUTION The largest subset of mutually compatible jobs.

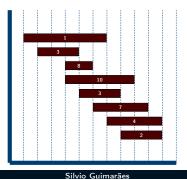


- Two jobs are compatible if they do not overlap.
- This problem models the situation where you have a resource, a set of fixed jobs, and you want to schedule as many jobs as possible.
- Greedy algorithm sort jobs in non decreasing order of finish times. Add next job to current subset only if it is compatible with previously-selected jobs.

WEIGHTED INTERVAL SCHEDULING

INSTANCE Nonempty set $\{(s_i, f_i), 1 \le i \le n\}$ of start and finish times of *n* jobs and a weight $v_i \ge 0$ associated with each job.

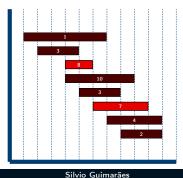
SOLUTION A set *S* of mutually compatible jobs such that $\sum_{i \in S} v_i$ is maximised.



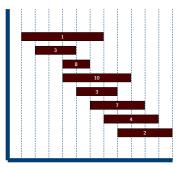
WEIGHTED INTERVAL SCHEDULING

INSTANCE Nonempty set $\{(s_i, f_i), 1 \le i \le n\}$ of start and finish times of *n* jobs and a weight $v_i \ge 0$ associated with each job.

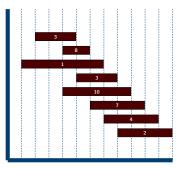
SOLUTION A set S of mutually compatible jobs such that $\sum_{i \in S} v_i$ is maximised.



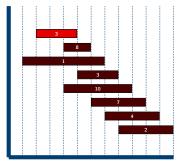
- Two jobs are compatible if they do not overlap.
- This problem models the situation where you have a resource, a set of fixed jobs, and you want to schedule as many weighted jobs as possible.
- Greedy algorithm can produce arbitrarily bad results for this problem.



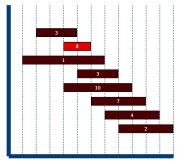
Silvio Guimarães



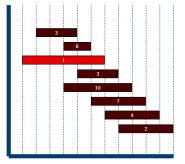
Silvio Guimarães



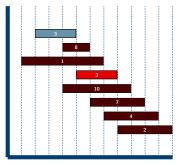
- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.



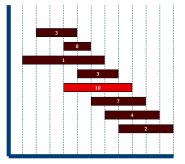
- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.



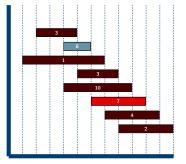
- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.



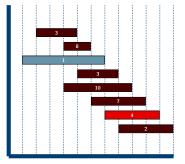
- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.



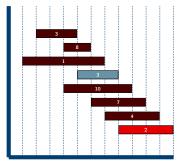
- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.



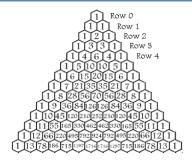
- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.

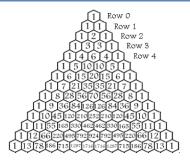


- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.

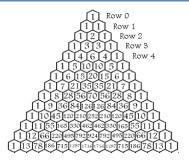


- ▶ p(j) is the largest index i < j such that job i is compatible with job j. p(j) = 0 if there is no such job i.
- We will develop optimal algorithm from very obvious statements about the problem.



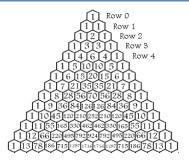


- ► Pascal's triangle:
 - Each element is a binomial co-efficient.
 - Each element is the sum of the two elements above it.



- ► Pascal's triangle:
 - Each element is a binomial co-efficient.
 - Each element is the sum of the two elements above it.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$



- Pascal's triangle:
 - Each element is a binomial co-efficient.
 - Each element is the sum of the two elements above it.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

Proof: either we select the *n*th element or not ...

Let O be the optimal solution. Two cases to consider.
 Case 1 job n is not in O.

▶ Let O be the optimal solution. Two cases to consider.
 Case 1 job n is not in O. O must be the optimal solution for jobs {1,2,...,n-1}.
 Case 2 job n is in O.

- \blacktriangleright Let ${\mathcal O}$ be the optimal solution. Two cases to consider.
 - Case 1 job n is not in \mathcal{O} . \mathcal{O} must be the optimal solution for jobs $\{1, 2, \dots, n-1\}$.
 - Case 2 job n is in \mathcal{O} .
 - \mathcal{O} cannot use incompatible jobs $\{p(n)+1, p(n)+2, \dots, n-1\}.$
 - ▶ Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.

- \blacktriangleright Let ${\mathcal O}$ be the optimal solution. Two cases to consider.
 - Case 1 job n is not in \mathcal{O} . \mathcal{O} must be the optimal solution for jobs $\{1, 2, \dots, n-1\}$.
 - Case 2 job n is in \mathcal{O} .
 - \mathcal{O} cannot use incompatible jobs $\{p(n)+1, p(n)+2, \dots, n-1\}.$
 - ▶ Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.
- O must be the best of these two choices!

 \blacktriangleright Let ${\mathcal O}$ be the optimal solution. Two cases to consider.

Case 1 job n is not in \mathcal{O} . \mathcal{O} must be the optimal solution for jobs $\{1, 2, \dots, n-1\}$.

Case 2 job n is in \mathcal{O} .

- \mathcal{O} cannot use incompatible jobs $\{p(n)+1, p(n)+2, \dots, n-1\}.$
- ▶ Remaining jobs in O must be the optimal solution for jobs {1,2,...,p(n)}.
- \mathcal{O} must be the best of these two choices!
- ► Suggests finding optimal solution for sub-problems consisting of jobs {1, 2, ..., j − 1, j}, for all values of j.

► Let O_j be the optimal solution for jobs {1, 2, ..., j} and OPT(j) be the value of this solution (OPT(0) = 0).

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(j): Case 1: $j \notin O_j$:

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(*j*):

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(*j*):
 - Case 1: $j \notin \mathcal{O}_j$: OPT(j) = OPT(j-1). Case 2: $j \in \mathcal{O}_j$:

- ► Let O_j be the optimal solution for jobs {1,2,...,j} and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(*j*):

Case 1:
$$j \notin \mathcal{O}_j$$
: $OPT(j) = OPT(j-1)$.
Case 2: $j \in \mathcal{O}_j$: $OPT(j) = v_j + OPT(p(j))$

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(*j*):

Case 2: $j \in \mathcal{O}_j$: $OPT(j) = v_j + OPT(p(j))$

 $OPT(j) = max(v_j + OPT(p(j)), OPT(j-1))$

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(j):

Case 2: $j \in \mathcal{O}_j$: $OPT(j) = v_j + OPT(p(j))$

 $OPT(j) = max(v_j + OPT(p(j)), OPT(j-1))$

• When does request j belong to \mathcal{O}_j ?

- ▶ Let \mathcal{O}_j be the optimal solution for jobs $\{1, 2, ..., j\}$ and OPT(j) be the value of this solution (OPT(0) = 0).
- We are seeking \mathcal{O}_n with a value of OPT(n).
- ► To compute OPT(j):

Case 2: $j \in \mathcal{O}_j$: $OPT(j) = v_j + OPT(p(j))$

 $OPT(j) = max(v_j + OPT(p(j)), OPT(j-1))$

When does request j belong to O_j? If and only if v_j + OPT(p(j)) ≥ OPT(j − 1).

```
Algorithm: Compute-opt
   input : A set of weighted jobs R, index j and largest
            compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
 2
       return 0
 3 else
       return max
 4
        (v_i + Compute - opt(p(j)), Compute - opt(j-1))
 5 end
  Correctness of algorithm follows by induction.
```

▶ What is the running time of the algorithm?

```
Algorithm: Compute-opt
   input : A set of weighted jobs R, index j and largest
            compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
 2
       return 0
 3 else
 4
       return max
        (v_i + Compute - opt(p(i)), Compute - opt(i-1))
 5 end
  Correctness of algorithm follows by induction.
```

▶ What is the running time of the algorithm? Can be exponential in *n*.

Algorithm: Compute-opt

```
input : A set of weighted jobs R, index j and largest compatible indices.
```

output: A set of compatible jobs A

- 1 if j = 0 then
- 2 return 0
- 3 else

```
4 return max
```

```
(v<sub>j</sub>+Compute-opt(p(j)),Compute-opt(j-1))
```

- 5 end
 - Correctness of algorithm follows by induction
 - ▶ What is the running time of the algorithm? Can be exponential in *n*.
 - When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1 and j − 2.

OPT(5) = OPT(4) = OPT(3) = OPT(2) = OPT(1) = OPT(0) = 0

OPT(6) =

Example of Recursive Algorithm

 $OPT(6) = max(v_6 + OPT(p(6)), OPT(5)) = max(1 + OPT(3), OPT(5))$ OPT(5) = OPT(4) = OPT(3) = OPT(2) = OPT(1) =OPT(0) = 0 $OPT(6) = \max(v_6 + OPT(p(6)), OPT(5)) = \max(1 + OPT(3), OPT(5))$ $OPT(5) = \max(v_5 + OPT(p(5)), OPT(4)) = \max(2 + OPT(3), OPT(4))$ OPT(4) = OPT(3) = OPT(2) = OPT(1) =OPT(0) = 0 $OPT(6) = \max(v_6 + OPT(p(6)), OPT(5)) = \max(1 + OPT(3), OPT(5))$ $OPT(5) = \max(v_5 + OPT(p(5)), OPT(4)) = \max(2 + OPT(3), OPT(4))$ $OPT(4) = \max(v_4 + OPT(p(4)), OPT(3)) = \max(7 + OPT(0), OPT(3))$ OPT(3) = OPT(2) = OPT(2) = OPT(1) =OPT(0) = 0 $\begin{array}{l} \mathsf{OPT}(6) = \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) = \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) = \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) = \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ \mathsf{OPT}(2) = \\ \mathsf{OPT}(1) = \\ \mathsf{OPT}(0) = 0 \end{array}$

 $\begin{array}{l} \mathsf{OPT}(6) = \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) = \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) = \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) = \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ \mathsf{OPT}(2) = \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) \\ \mathsf{OPT}(1) = \\ \mathsf{OPT}(0) = 0 \end{array}$

 $\begin{array}{l} \mathsf{OPT}(6) = \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) = \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) = \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) = \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ \mathsf{OPT}(2) = \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) \\ \mathsf{OPT}(1) = v_1 = 2 \\ \mathsf{OPT}(0) = 0 \end{array}$

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) \\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ \mathsf{OPT}(1) &= v_1 = 2 \\ \mathsf{OPT}(0) &= 0 \end{aligned}$

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) \\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ \mathsf{OPT}(1) &= v_1 = 2 \\ \mathsf{OPT}(0) &= 0 \end{aligned}$

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) \\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ \mathsf{OPT}(1) &= v_1 = 2 \\ \mathsf{OPT}(0) &= 0 \end{aligned}$

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) \\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8 \\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7 \\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6 \\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4 \\ \mathsf{OPT}(1) &= v_1 = 2 \\ \mathsf{OPT}(0) &= 0 \end{aligned}$

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) = 8\\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8\\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7\\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6\\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4\\ \mathsf{OPT}(1) &= v_1 = 2\\ \mathsf{OPT}(0) &= 0 \end{aligned}$

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) = 8\\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8\\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7\\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6\\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4\\ \mathsf{OPT}(1) &= v_1 = 2\\ \mathsf{OPT}(0) &= 0 \end{aligned}$

Optimal solution is

 $\begin{aligned} \mathsf{OPT}(6) &= \max(v_6 + \mathsf{OPT}(p(6)), \mathsf{OPT}(5)) = \max(1 + \mathsf{OPT}(3), \mathsf{OPT}(5)) = 8\\ \mathsf{OPT}(5) &= \max(v_5 + \mathsf{OPT}(p(5)), \mathsf{OPT}(4)) = \max(2 + \mathsf{OPT}(3), \mathsf{OPT}(4)) = 8\\ \mathsf{OPT}(4) &= \max(v_4 + \mathsf{OPT}(p(4)), \mathsf{OPT}(3)) = \max(7 + \mathsf{OPT}(0), \mathsf{OPT}(3)) = 7\\ \mathsf{OPT}(3) &= \max(v_3 + \mathsf{OPT}(p(3)), \mathsf{OPT}(2)) = \max(4 + \mathsf{OPT}(1), \mathsf{OPT}(2)) = 6\\ \mathsf{OPT}(2) &= \max(v_2 + \mathsf{OPT}(p(2)), \mathsf{OPT}(1)) = \max(4 + \mathsf{OPT}(0), \mathsf{OPT}(1)) = 4\\ \mathsf{OPT}(1) &= v_1 = 2\\ \mathsf{OPT}(0) &= 0 \end{aligned}$

Optimal solution is job 5, job 3, and job 1.

Memoisation

Store OPT(j) values in a cache and reuse them rather than recompute them.

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0:
 2
 3 else if M[j] is not empty then
      return M[i];
 4
 5 else
      M[i] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i];
 7
 8 end
```

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 4
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i]:
 7
 8 end
```

• Claim: running time of this algorithm is O(n) (after sorting).

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 4
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i];
 7
 8 end
```

- ▶ Claim: running time of this algorithm is O(n) (after sorting).
- Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in recursive calls.

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 4
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i]:
 7
 8 end
```

- Claim: running time of this algorithm is O(n) (after sorting).
- Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in recursive calls.
- ► Total time spent is the order of the number of recursive calls to M-Compute-Opt.

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 4
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i]:
 7
 8 end
```

How many such recursive calls are there in total?

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 4
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i];
 7
 8 end
```

How many such recursive calls are there in total?

▶ Use number of filled entries in *M* as a measure of progress.

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i];
 7
 8 end
```

- How many such recursive calls are there in total?
- ▶ Use number of filled entries in *M* as a measure of progress.
- ► Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

```
Algorithm: M-Compute-opt
   input : A set of weighted jobs R, index j and largest
           compatible indices.
   output: A set of compatible jobs A
 1 if i = 0 then
      return 0.
 2
 3 else if M[i] is not empty then
      return M[i];
 5 else
      M[j] = \max
 6
          (v_i+M-Compute-opt(p(j)),M-Compute-opt(j-1));
      return M[i];
 7
 8 end
```

- How many such recursive calls are there in total?
- Use number of filled entries in M as a measure of progress.
- Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.
- Therefore, total number of recursive calls is O(n)

From Recursion to Iteration

- Unwind the recursion and convert it into iteration.
- Can compute values in M iteratively in O(n) time.
- Find-Solution works as before.

Algorithm: Iterative weighted interval scheduling

```
input : A set of weighted jobs R, index j and largest compatible indices.
```

output: A set of compatible jobs A

```
1 M[0] = 0;

2 foreach j \in [1, n] do

3 | M[j] = max(v_j+M[p(j)],M[j-1]);
```

```
4 end
```

Basic Outline of Dynamic Programming

- To solve a problem, we need a collection of sub-problems that satisfy a few properties:
 - 1. There are a polynomial number of sub-problems.
 - 2. The solution to the problem can be computed easily from the solutions to the sub-problems.
 - 3. There is a natural ordering of the sub-problems from "smallest" \cdot

4. There is an easy-to-compute recurrence that allows us to compute the solution to a sub-problem from the solutions to some smaller sub-problems.

Basic Outline of Dynamic Programming

- To solve a problem, we need a collection of sub-problems that satisfy a few properties:
 - 1. There are a polynomial number of sub-problems.
 - 2. The solution to the problem can be computed easily from the solutions to the sub-problems.
 - 3. There is a natural ordering of the sub-problems from "smallest" to

- Difficulties in designing dynamic programming algorithms:
 - 1. Which sub-problems to define?
 - 2. How can we tie up sub-problems using a recurrence?
 - 3. How do we order the sub-problems (to allow iterative computation of optimal solutions to sub-problems)?

Algorithm design and analysis

— Some exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Formally, the task is to find indices *i* and *j* with $1 \le i \le j \le n$, such that

Formally, the task is to find indices *i* and *j* with $1 \le i \le j \le n$, such that

 $\sum_{x=i}^{J} A[x]$

Formally, the task is to find indices i and j with $1 \le i \le j \le n$, such that

 $\sum_{x=i}^{J} A[x]$

Formally, the task is to find indices *i* and *j* with $1 \le i \le j \le n$, such that

$$\sum_{x=i}^{J} A[x]$$

Some properties of this problem are:

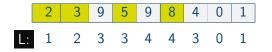
- ▶ If the array contains all non-negative numbers, then the problem is trivial
- If the array contains all non-positive numbers, then a solution is any subarray of size 1;
- Several different sub-arrays may have the same maximum sum.

Maximum subarray problem

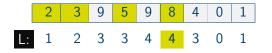
- If x > 0 then the answer is A + x + B
- If x < 0 then the answer may be

1.
$$\max\{A, B\}$$
 if $A + x < 0$

2.
$$\max\{A, B, A + x + B\}$$
 if $A + x > 0$



 $max\{L(1), L(2), ..., L(n)\}$

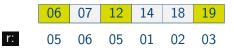


 $max\{L(1), L(2), ..., L(n)\}$

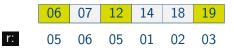
Longest increasing subsequence

- ► There are *n* possible places where you can place an advertisement given by x₁, x₂, · · · , x_n in [0, M].
- Placing an advertisement at x_i gives value r_i .
- You cannot put two advertisements at distance < 5kms from each other.

- ► There are *n* possible places where you can place an advertisement given by x₁, x₂, · · · , x_n in [0, M].
- Placing an advertisement at x_i gives value r_i .
- You cannot put two advertisements at distance < 5kms from each other.



- ► There are *n* possible places where you can place an advertisement given by x₁, x₂, · · · , x_n in [0, M].
- Placing an advertisement at x_i gives value r_i .
- You cannot put two advertisements at distance < 5kms from each other.



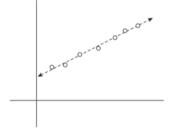
Algorithm design and analysis — Segmented Least Squares —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

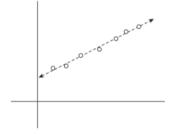
Feb 2023

Least Squares Problem



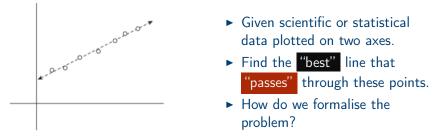
- Given scientific or statistical data plotted on two axes.
- Find the "best" line that "passes" through these points.

Least Squares Problem



- Given scientific or statistical data plotted on two axes.
- Find the "best" line that
 "passes" through these points.
- How do we formalise the problem?

Least Squares Problem



LEAST SQUARES

INSTANCE Set $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ of *n* points.

SOLUTION Line L: y = ax + b that minimises

$$\operatorname{Error}(L,P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2.$$

LEAST SQUARES

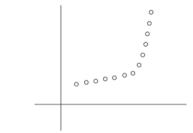
INSTANCE Set $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ of *n* points.

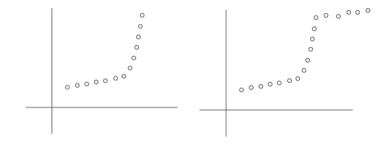
SOLUTION Line L: y = ax + b that minimises

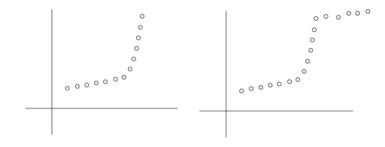
$$\operatorname{Error}(L,P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2.$$

Solution is achieved by

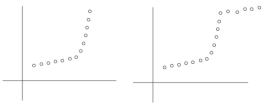
$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}} \text{ and } b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$







- Want to fit multiple lines through *P*.
- Each line must fit contiguous set of x-coordinates.
- ► Lines must minimise total error.

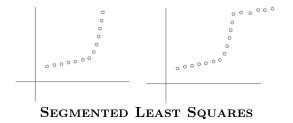


SEGMENTED LEAST SQUARES

INSTANCE Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of *n* points, $x_1 < x_2 < \dots < x_n$.

SOLUTION A integer k, a partition of P into k segments $\{P_1, P_2, \ldots, P_k\}$, k lines $L_j : y = a_j x + b_j, 1 \le j \le k$ that minimise

$$\sum_{j=1}^{k} \operatorname{Error}(L_j, P_j)$$

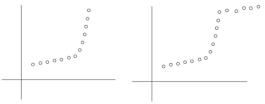


INSTANCE Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of *n* points, $x_1 < x_2 < \cdots < x_n$ and a parameter C > 0.

SOLUTION A integer k, a partition of P into k segments $\{P_1, P_2, \ldots, P_k\}$, k lines $L_j : y = a_j x + b_j, 1 \le j \le k$ that minimise

$$\sum_{j=1}^{k} \operatorname{Error}(L_j, P_j)$$

Silvio Guimarães



SEGMENTED LEAST SQUARES

INSTANCE Set $P = \{p_i = (x_i, y_i), 1 \le i \le n\}$ of *n* points, $x_1 < x_2 < \cdots < x_n$ and a parameter C > 0.

SOLUTION A integer k, a partition of P into k segments $\{P_1, P_2, \ldots, P_k\}$, k lines $L_j : y = a_j x + b_j, 1 \le j \le k$ that minimise

A subset *P'* of *P* is a segment if $1 \le i < j \le n$ exist such that $P' = \{(x_i, y_i), (x_{i+1}, y_{i+1}), \dots, (x_{j-1}, y_{j-1}), (x_j, y_j)\}.$

Silvio Guimarães

Formulating the Recursion: I

- Observation: p_n is part of some segment in the optimal solution. This segment starts at some point p_i.
- Let OPT(*i*) be the optimal value for the points $\{p_1, p_2, \ldots, p_i\}$.
- Let $e_{i,j}$ denote the minimum error of any line that fits $\{p_i, p_2, \ldots, p_j\}$.
- ▶ We want to compute OPT(*n*).

► If the last segment in the optimal partition is {p_i, p_{i+1},..., p_n}, then

$$OPT(n) = e_{i,n} + C + OPT(i-1)$$

Formulating the Recursion: II

- Consider the sub-problem on the points $\{p_1, p_2, \dots, p_j\}$
- ► To obtain OPT(*j*), if the last segment in the optimal partition is $\{p_i, p_{i+1}, \ldots, p_j\}$, then

 $OPT(j) = e_{i,j} + C + OPT(i-1)$

Formulating the Recursion: II

- Consider the sub-problem on the points $\{p_1, p_2, \dots, p_j\}$
- ► To obtain OPT(*j*), if the last segment in the optimal partition is $\{p_i, p_{i+1}, \ldots, p_j\}$, then

$$OPT(j) = e_{i,j} + C + OPT(i-1)$$

Since i can take only j distinct values,

$$\mathsf{OPT}(j) = \min_{1 \le i \le j} \left(e_{i,j} + C + \mathsf{OPT}(i-1) \right)$$

Segment {p_i, p_{i+1}, ..., p_j} is part of the optimal solution for this sub-problem if and only if the minimum value of OPT(j) is obtained using index i. solution

Dynamic Programming Algorithm

$$OPT(j) = \left\{ egin{array}{ll} 0, & ext{if } j = 0 \ \min_{1 \leq i \leq j}(e_{ij} + c + OPT[i-1]), & ext{otherwise} \end{array}
ight.$$

Algorithm: Segmented least squares: an iterative algorithm

```
input : A set of n points p_i

output: A set of compatible jobs A

1 M[0] = 0;

2 for j=1 to n do

3 | for i=1 to j do

4 | compute the e_{ij} for the segment p_i, \dots, p_j;

5 | end

6 end

7 for j=1 to n do

8 | M[j] = \min_{1 \le i \le j} (e_{ij} + c + M[i-1]);

9 end
```

Dynamic Programming Algorithm

$$OPT(j) = \begin{cases} 0, & \text{if } j = 0\\ \min_{1 \le i \le j} (e_{ij} + c + OPT[i-1]), & \text{otherwise} \end{cases}$$

Algorithm: Segmented least squares: an iterative algorithm

```
input : A set of n points p_i

output: A set of compatible jobs A

1 M[0] = 0;

2 for j=1 to n do

3 | for i=1 to j do

4 | compute the e_{ij} for the segment p_i, \dots, p_j;

5 | end

6 end

7 for j=1 to n do

8 | M[j] = min_{1 \le i \le j}(e_{ij} + c + M[i-1]);

9 end
```

• Running time is $O(n^3)$, can be improved to $O(n^2)$.

► We can find the segments in the optimal solution by backtracking

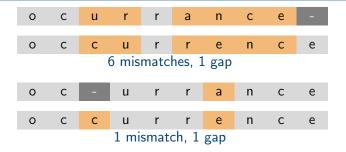
Algorithm design and analysis

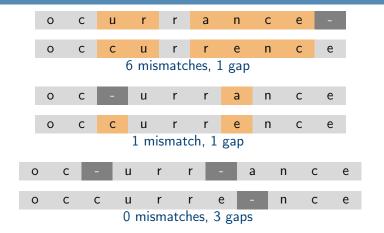
— Sequence alignment —

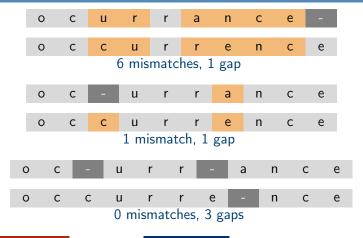
Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

- Given two strings, measure how similar they are.
- Given a database of strings and a query string, compute the string most similar to query in the database.
- Applications:
 - Online searches (Web, dictionary).
 - Spell-checkers.
 - Computational biology
 - Speech recognition.
 - Basis for Unix diff.







- Edit distance model: how many changes must you to make to one string to transform it into another?
- Changes allowed are deleting a letter, adding a letter, changing a letter.

INSTANCE Let two string $x = x_1 x_2 x_3 \dots x_m$ and $y = y_1 y_2 \dots y_n$

INSTANCE Let two string $x = x_1 x_2 x_3 \dots x_m$ and $y = y_1 y_2 \dots y_n$

0	С	-	u	r	r	а	n	С	е
0	С	С	u	r	r	е	n	С	е

INSTANCE Let two string $x = x_1 x_2 x_3 \dots x_m$ and $y = y_1 y_2 \dots y_n$

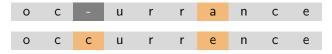
- \blacktriangleright A matching of these sets is a set M of ordered pairs such that
 - 1. in each pair (i, j), $1 \le i \le m$ and $1 \le j \le m$ and
 - no index from x (respectively, from y) appears as the first (respectively, second) element in more than one ordered pair.
- ▶ A matching *M* is an alignment if there are no "crossing pairs" in *M*: if $(i,j) \in M$ and $(i',j') \in M$ and i < i' then j < j'.

INSTANCE Let two string $x = x_1 x_2 x_3 \dots x_m$ and $y = y_1 y_2 \dots y_n$

- ► A matching *M* is an alignment if there are no "crossing pairs" in *M*: if $(i,j) \in M$ and $(i',j') \in M$ and i < i' then j < j'.
- The pair $x_i y_j$ and $x_{i'} yj'$ cross if i < i'', but j j'.

INSTANCE Let two string $x = x_1 x_2 x_3 \dots x_m$ and $y = y_1 y_2 \dots y_n$

SOLUTION An alignment of minimum cost.



▶ A matching *M* is an alignment if there are no "crossing pairs" in *M*: if $(i, j) \in M$ and $(i', j') \in M$ and i < i' then j < j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i:x_i \text{ unmatched}} \delta + \sum_{j:x_j \text{ unmatched}} \delta}_{\text{gaps}}$$

► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?

- Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i, j) = min cost of aligning $x = x_1 \dots x_i$ and $y = y_1 \dots y_j$.
 - Case 1: OPT matches x_i - y_j so $(i, j) \in M$:

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i,j) = min cost of aligning x = x₁...x_i and y = y₁...y_j.
 Case 1: OPT matches x_i-y_i so (i, j) ∈ M:

$$\mathsf{OPT}(i,j) = \alpha_{\mathsf{x}_i \mathsf{y}_j} + \mathsf{OPT}(i-1,j-1)$$

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i,j) = min cost of aligning x = x₁...x_i and y = y₁...y_j.
 Case 1: OPT matches x_i-y_i so (i, j) ∈ M:

$$\mathsf{OPT}(i,j) = \alpha_{x_i y_j} + \mathsf{OPT}(i-1,j-1)$$

► Case 2a: OPT leaves x_i unmatched, so i not matched:

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i,j) = min cost of aligning x = x₁...x_i and y = y₁...y_j.
 Case 1: OPT matches x_i-y_i so (i, j) ∈ M:

$$\mathsf{OPT}(i,j) = \alpha_{x_i y_j} + \mathsf{OPT}(i-1,j-1)$$

► Case 2a: OPT leaves x_i unmatched, so i not matched: OPT(i,j) = δ + OPT(i − 1,j)

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i,j) = min cost of aligning x = x₁...x_i and y = y₁...y_j.
 Case 1: OPT matches x_i-y_j so (i, j) ∈ M:

$$\mathsf{OPT}(i,j) = \alpha_{x_i y_j} + \mathsf{OPT}(i-1,j-1)$$

- ► Case 2a: OPT leaves x_i unmatched, so i not matched: OPT $(i,j) = \delta + OPT(i-1,j)$
- ► Case 2b: OPT leaves y_j unmatched, so j not matched: OPT(i,j) = δ + OPT(i,j-1)

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i,j) = min cost of aligning x = x₁...x_i and y = y₁...y_j.
 Case 1: OPT matches x_i-y_j so (i, j) ∈ M:

$$\mathsf{OPT}(i,j) = \alpha_{x_i y_j} + \mathsf{OPT}(i-1,j-1)$$

- ► Case 2a: OPT leaves x_i unmatched, so i not matched: OPT $(i,j) = \delta + OPT(i-1,j)$
- ► Case 2b: OPT leaves y_j unmatched, so j not matched: OPT(i,j) = δ + OPT(i,j-1)
- (i, j) ∈ M if and only if minimum is achieved by the first term.
 What are the base cases?

- ► Consider index $m \in x$ and index $n \in y$. Is $(m, n) \in M$?
- ▶ Claim: $(m, n) \notin M \Rightarrow m \in x$ not matched or $n \in y$ not matched.
- OPT(i,j) = min cost of aligning x = x₁...x_i and y = y₁...y_j.
 Case 1: OPT matches x_i-y_j so (i, j) ∈ M:

$$\mathsf{OPT}(i,j) = \alpha_{x_i y_j} + \mathsf{OPT}(i-1,j-1)$$

- ► Case 2a: OPT leaves x_i unmatched, so i not matched: OPT(i,j) = δ + OPT(i − 1,j)
- ► Case 2b: OPT leaves y_j unmatched, so j not matched: OPT(i,j) = δ + OPT(i,j-1)

(i,j) ∈ M if and only if minimum is achieved by the first term.
What are the base cases? OPT(i,0) = OPT(0,i) = iδ.

$$OPT(i,j) = \begin{cases} j\delta, & \text{if } i = 0\\ \min \begin{cases} \alpha_{x_i y_j} + OPT(i-1,j-1), & \\ \delta + OPT(i-1,j), & \text{otherwise} \\ \delta + OPT(i,j-1) & \\ i\delta, & \text{if } j = 0 \end{cases}$$

• Running time is O(mn). Space used in O(mn).

$$\mathsf{OPT}(i,j) = \begin{cases} j\delta, & \text{if } i = 0\\ \min \begin{cases} \alpha_{x_i y_j} + \mathsf{OPT}(i-1,j-1), & \\ \delta + \mathsf{OPT}(i-1,j), & \text{otherwise} \\ \delta + \mathsf{OPT}(i,j-1) & \\ i\delta, & \text{if } j = 0 \end{cases}$$

- Running time is O(mn). Space used in O(mn).
- Can compute OPT(m, n) in O(mn) time and O(m + n) space (*Hirschberg 1975*, Chapter 6.7).

$$OPT(i,j) = \begin{cases} j\delta, & \text{if } i = 0\\ \min \begin{cases} \alpha_{x_i y_j} + OPT(i-1,j-1), & \\ \delta + OPT(i-1,j), & \text{otherwise} \\ \delta + OPT(i,j-1) & \\ i\delta, & \text{if } j = 0 \end{cases}$$

- Running time is O(mn). Space used in O(mn).
- Can compute OPT(m, n) in O(mn) time and O(m + n) space (*Hirschberg 1975*, Chapter 6.7).
- Can compute *alignment* in the same bounds by combining dynamic programming with divide and conquer.

Longest commom subsequence

The longest commom subsequence problem is the task of finding the longest subsequence which is in two sequences x and y.

The longest commom subsequence problem is the task of finding the longest subsequence which is in two sequences x and y.

Formally, $w_0w_1 \ldots w_{i-1}$ is a subsequence of $x_0x_1 \ldots x_{m-1}$ if there exists a strictly increasing sequence of integers $(k_0, k_1, \ldots, k_{i-1})$ such that for $0 \le k \le i-1$. A word w is a longest common subsequence of x and y if w is a subsequence of x, a subsequence of y and its length is maximal. The longest commom subsequence problem is the task of finding the longest subsequence which is in two sequences x and y.

Formally, $w_0w_1 \ldots w_{i-1}$ is a subsequence of $x_0x_1 \ldots x_{m-1}$ if there exists a strictly increasing sequence of integers $(k_0, k_1, \ldots, k_{i-1})$ such that for $0 \le k \le i-1$. A word w is a longest common subsequence of x and y if w is a subsequence of x, a subsequence of y and its length is maximal.

The longest commom subsequence problem is the task of finding the longest subsequence which is in two sequences x and y.

Formally, $w_0 w_1 \dots w_{i-1}$ is a subsequence of $x_0 x_1 \dots x_{m-1}$ if there exists a strictly increasing sequence of integers $(k_0, k_1, \dots, k_{i-1})$ such that for $0 \le k \le i-1$. A word w is a longest common subsequence of x and y if w is a subsequence of x, a subsequence of y and its length is maximal.

Some properties of this problem are:

- the lenght of the longest subsequence must be maximal;
- may have several longest subsequences with the same size;
- it is possible to identify the subsequence by backtracking

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j \\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise} \\ \mathsf{OPT}(i,j-1) & & \text{otherwise} \\ 0, & & \text{if } j = 0 \end{cases}$$

C T A C C

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise} \end{cases} \\ 0, & \text{if } j = 0 \end{cases}$$

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise} \end{cases} \\ 0, & \text{if } j = 0 \end{cases}$$

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise} \end{cases} \\ 0, & \text{if } j = 0 \end{cases}$$

		С	Т	А	С	С
	0	0	0	0	0	0
Γ	0	0	1	1	1	1
4	0	0	1	2	2	2

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise} \end{cases} \\ 0, & \text{if } j = 0 \end{cases}$$

		С	Т	А	С	С	
	0	0	0	0	0	0	
-	0	0	1	1	1	1	
1	0	0	1	2	2	2	
2	0	1	1	2	3	3	

A C A C G

Т

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise}\\ 0, & & \text{if } j = 0 \end{cases}$$

		С	Т	А	С	С
	0	0	0	0	0	0
Т	0	0	1	1	1	1
А	0	0	1	2	2	2
С	0	1	1	2	3	3
А	0	1	1	2	3	3
С						
G						

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise}\\ 0, & & \text{if } j = 0 \end{cases}$$

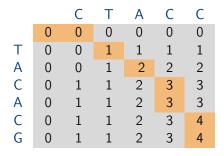
		С	Т	А	С	С
	0	0	0	0	0	0
Т	0	0	1	1	1	1
А	0	0	1	2	2	2
С	0	1	1	2	3	3
А	0	1	1	2	3	3
С	0	1	1	2	3	4
G						

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise}\\ 0, & & \text{if } j = 0 \end{cases}$$

		С	Т	А	С	С
	0	0	0	0	0	0
Т	0	0	1	1	1	1
А	0	0	1	2	2	2
С	0	1	1	2	3	3
А	0	1	1	2	3	3
С	0	1	1	2	3	4
G	0	1	1	2	3	4

Dynamic Programming Algorithm

$$\mathsf{OPT}(i,j) = \begin{cases} 0, & \text{if } i = 0\\ 1 + \mathsf{OPT}(i-1,j-1), & \text{if } x_i = y_j\\ \max \begin{cases} \mathsf{OPT}(i-1,j), & \text{otherwise}\\ \mathsf{OPT}(i,j-1) & & \text{otherwise}\\ 0, & & \text{if } j = 0 \end{cases}$$



Longest palindrome

The longest palindrome problem is the task of finding the longest subsequence which is a palindrome.

Formally, $w_0 w_1 \dots w_{i-1}$ is a subsequence of $x_0 x_1 \dots x_{m-1}$ and w is a palindrome. A word w is a subsequence of x its length is maximal.

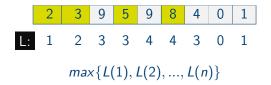
Formally, $w_0 w_1 \dots w_{i-1}$ is a subsequence of $x_0 x_1 \dots x_{m-1}$ and w is a palindrome. A word w is a subsequence of x its length is maximal.

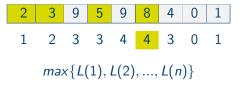
Formally, $w_0 w_1 \dots w_{i-1}$ is a subsequence of $x_0 x_1 \dots x_{m-1}$ and w is a palindrome. A word w is a subsequence of x its length is maximal.

How to find the size of the longest palindrome?

Formally, $w_0 w_1 \dots w_{i-1}$ is a subsequence of $x_0 x_1 \dots x_{m-1}$ and w is a palindrome. A word w is a subsequence of x its length is maximal.

How to find the size of the longest palindrome?





How to find the size of the LIS by using another strategy?

How to find the size of the LIS by using another strategy?

Algorithm design and analysis

— Shortest Path Problem —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Shortest Path Problem

- G = (V, E) is a connected directed graph. Each edge e has a length l_e ≥ 0.
- V has \overline{n} nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to each node in V.
- ► Aside: If *G* is undirected, convert to a directed graph by replacing each edge in *G* by two directed edges.

Shortest Path Problem

- G = (V, E) is a connected directed graph. Each edge e has a length l_e ≥ 0.
- V has \overline{n} nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to each node in V.
- ► Aside: If *G* is undirected, convert to a directed graph by replacing each edge in *G* by two directed edges.

SHORTEST PATHS

INSTANCE A directed graph G(V, E), a function $I : E \to \mathbb{R}^+$, and a node $s \in V$

SOLUTION A set $\{P_u, u \in V\}$, where P_u is the shortest path in G from s to u.

► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

- ► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.
- Greedily add a node v to S that is closest to s.

- ► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.
- Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- **3** Initially d[s] = 0 and S = s;

```
4 while S \neq V do

5 Select a node v \notin S with at least one edge from S for which

d'(v) = \min_{e=(u,v): u \in S} d[u] + W(e) is as small as possible;

6 Add v to S and define d[v] = d'[v];

7 end
```

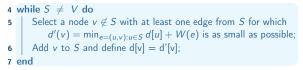
► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

• Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;



► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

• Greedily add a node v to S that is closest to s.

Algorithm: Shortes path algorithm – Dijkstra)

input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

```
4 while S \neq V do
5 | Select a node v \notin S with at least one edge from S for which
```

```
d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e) is as small as possible;
```

```
6 Add v to S and define d[v] = d'[v];
```

```
7 end
```

► Maintain a set S of explored nodes: for each node u ∈ S, we have determined the length d(u) of the shortest path from s to u.

• Greedily add a node v to S that is closest to s.

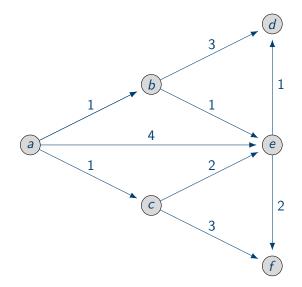
Algorithm: Shortes path algorithm – Dijkstra)

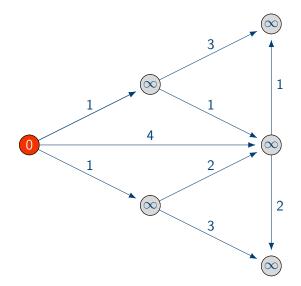
input : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s

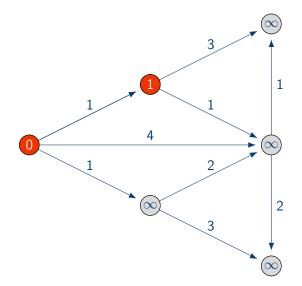
- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

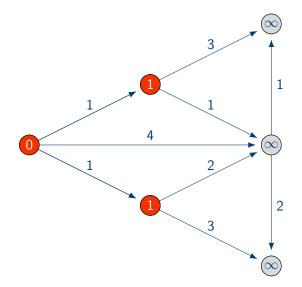
4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v];

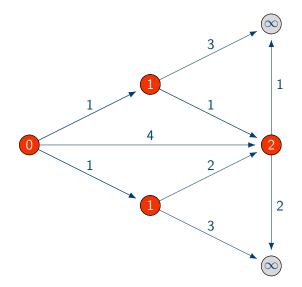
- 7 end
- Can modify algorithm to compute the shortest paths themselves: record the predecessor u that minimises d'(v).

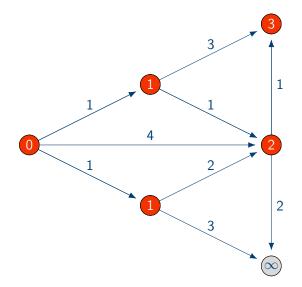


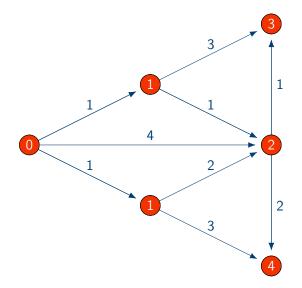










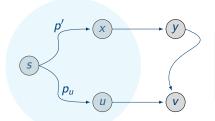


Proof of Correctness

- Let P_u be the shortest path computed for a node u.
- Claim: P_u is the shortest path from s to u.
- ▶ Prove by induction on the size of *S*.
 - Base case: |S| = 1. The only node in S is s.
 - ► Inductive step: we add the node v to S. Let u be the v's predecessor on the path P_v. Could there be a shorter path P from s to v?

Proof of Correctness

- Let P_u be the shortest path computed for a node u.
- Claim: P_u is the shortest path from s to u.
- Prove by induction on the size of S.
 - Base case: |S| = 1. The only node in S is s.
 - Inductive step: we add the node v to S. Let u be the v's predecessor on the path P_v. Could there be a shorter path P from s to v?



The alternate s - v path Pthrough x and y already too long by the time it had left the set S

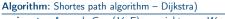
Comments about Dijkstra's Algorithm

- ► Algorithm cannot handle negative edge lengths.
- Union of shortest paths output form a tree. Why?

Algorithm: Shortes path algorithm - Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end



```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

► How many iterations are there of the while loop? .

Algorithm: Shortes path algorithm – Dijkstra) **input** : A graph G = (V, E), a weight map W and a source node s. output: The distances of the vertices from s 1 Let *S* be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do Select a node $v \notin S$ with at least one edge from S for which 5 sible;

$$d'(v) = \min_{e=(u,v):u\in S} d[u] + W(e)$$
 is as small as pos

6 Add v to S and define
$$d[v] = d'[v]$$
;

7 end

• How many iterations are there of the while loop? n-1.


```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes; 2 foreach $u \in S$ do store distance $d[u] = \infty$; 3 Initially d[s] = 0 and S = s; 4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end
- How many iterations are there of the while loop? n-1.
- In each iteration, for each node v ∉ S, compute min_{e=(u,v),u∈S} d(u) + l_e.

A Faster implementation of Dijkstra's Algorithm

Algorithm: Shortes path algorithm - Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

• Observation: If we add v to S, d'(w) changes only for v's neighbours.

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let *S* be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

- Observation: If we add v to S, d'(w) changes only for v's neighbours.
- Store the minima d'(v) for each node $v \in V S$ in a priority queue.
- ▶ Determine the next node *v* to add to *S* using EXTRACTMIN.
- After adding v, for each neighbour w of v, compute $d(v) + l_{(v,w)}$.
- ▶ If $d(v) + l_{(v,w)} < d'(w)$, update w's key using CHANGEKEY.

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

- Observation: If we add v to S, d'(w) changes only for v's neighbours.
- Store the minima d'(v) for each node $v \in V S$ in a priority queue.
- ▶ Determine the next node *v* to add to *S* using EXTRACTMIN.
- ► After adding v, for each neighbour w of v, compute $d(v) + l_{(v,w)}$.
- ▶ If $d(v) + l_{(v,w)} < d'(w)$, update w's key using CHANGEKEY.
- ► How many times are EXTRACTMIN and CHANGEKEY invoked?

Algorithm: Shortes path algorithm – Dijkstra)

```
input : A graph G = (V, E), a weight map W and a source node s.
output: The distances of the vertices from s
```

- 1 Let S be the set of explored nodes;
- 2 foreach $u \in S$ do store distance $d[u] = \infty$;
- 3 Initially d[s] = 0 and S = s;

4 while $S \neq V$ do 5 Select a node $v \notin S$ with at least one edge from S for which $d'(v) = \min_{e=(u,v):u \in S} d[u] + W(e)$ is as small as possible; 6 Add v to S and define d[v] = d'[v]; 7 end

- Observation: If we add v to S, d'(w) changes only for v's neighbours.
- Store the minima d'(v) for each node $v \in V S$ in a priority queue.
- Determine the next node v to add to S using EXTRACTMIN.
- After adding v, for each neighbour w of v, compute $d(v) + l_{(v,w)}$.
- ▶ If $d(v) + l_{(v,w)} < d'(w)$, update w's key using CHANGEKEY.
- ► How many times are EXTRACTMIN and CHANGEKEY invoked? n 1 and m times, respectively.

Single Source Shortest Path Problem

- ▶ G = (V, E) is a connected directed graph. Each edge e has a length l_e. Note that the weights may be negative.
- ► V has n nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to all other nodes in V.
- ► Aside: If G is undirected, convert to a directed graph by replacing each edge in G by two directed edges.

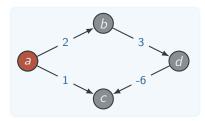
Single Source Shortest Path Problem

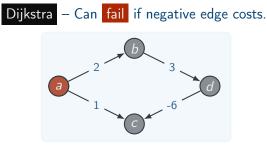
- ▶ G = (V, E) is a connected directed graph. Each edge e has a length l_e. Note that the weights may be negative.
- ► V has n nodes and E has m edges.
- ► Length of a path *P* is the sum of lengths of the edges in *P*.
- ► Goal is to determine the shortest path from some start node s to all other nodes in V.
- ► Aside: If G is undirected, convert to a directed graph by replacing each edge in G by two directed edges.

SHORTEST PATHS

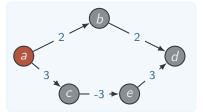
INSTANCE A directed graph G(V, E), a function $I : E \to \mathbb{R}$, and a node $s \in V$

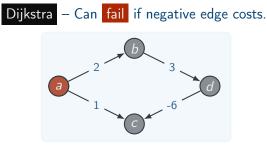
SOLUTION A set $\{P_u, u \in V\}$, where P_u is the shortest path in G from s to u.



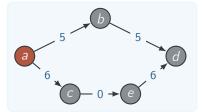


Re-weighting – Adding a constant to every edge weight can fail

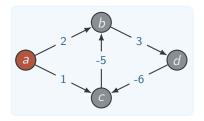




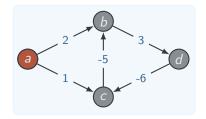
Re-weighting – Adding a constant to every edge weight can fail



If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.



If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.



The Bellman-Ford algorithm is a way to find single source shortest paths in a graph with negative edge weights (but no negative cycles).

OPT(i, v) = length of shortest v-t path P using at most i edges.

OPT(i, v) = length of shortest v-t path P using at most i edges.

• Case 1 : P uses at most i - 1 edges.

OPT(i, v) = OPT(i - 1, v)

OPT(i, v) = length of shortest v-t path P using at most i edges.

• Case 1 : P uses at most i - 1 edges.

$$OPT(i, v) = OPT(i - 1, v)$$

- Case 2 : P uses exactly i edges
 - ▶ if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i - 1 edges

OPT(i, v) = length of shortest v-t path P using at most i edges.

• Case 1 : P uses at most i - 1 edges.

$$OPT(i, v) = OPT(i - 1, v)$$

Case 2 : P uses exactly i edges

▶ if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i - 1 edges

$$OPT(i, v) = \begin{cases} 0, & \text{if } i = 0\\ \min \begin{cases} OPT(i-1, v) \\ \min\{OPT(i-1, w) + c_{vw} \end{cases}, & \text{otherwise} \end{cases}$$

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
 4
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i-1, w] + c_{vw}\}
 8
       end
 9
10 end
```

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i-1, w] + c_{vw}\}
 8
 9
       end
10 end
```

Computational cost: O(mn)

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i-1, w] + c_{vw}\}
 8
 9
       end
10 end
```

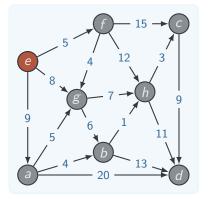
- Computational cost: O(mn)
- For finding the shortest paths, it is necessary to maintain a successor for each table entry.

```
Algorithm: Shortest path algorithm - Bellman-Ford
   input : A graph G = (V, E), a weight map W and a source node s.
   output: The distances of the vertices from s
 1 foreach v \in V do d[0, u] = \infty;
 2 Initially d[0, s] = 0;
 3 for i = 1 to n - 1 do
       foreach v \in V do
          d[i, v] = d[i - 1, v]
 5
       end
 6
       foreach edge (v, w) \in E do
 7
          d[i, v] = \min\{d[i, v], d[i - 1, w] + c_{vw}\}
 8
 9
       end
10 end
```

- Computational cost: O(mn)
- For finding the shortest paths, it is necessary to maintain a successor for each table entry.

How to detect negative cycles?

Shortest path – an example



Compute the shortest path from *e* to all other nodes!