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Greedy

Build up a solution incrementally , myopically optimizing some
local criterion.

Divide-and-conquer

Break up a problem into sub-problems , solve each sub-problem

independently , and combine solution to sub-problems to form
solution to original problem.

Dynamic programming.

Break up a problem into a series of overlapping sub-problems,
and build up solutions to larger and larger sub-problems
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1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
I Pro: natural approach to algorithm design.
I Con: many greedy approaches a problem, but only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Pro: usually reduces time for a problem known to be solvable in

polynomial time.
I Con: conquer step can be very hard to implement efficiently.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to

larger and larger sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is

polynomial in the size of the input.
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History of Dynamic Programming

I Bellman pioneered the systematic study of dynamic programming
in the 1950s.

I Dynamic programming = “planning over time.”
I The Secretary of Defense at that time was hostile to mathematical

research.
I Bellman sought an impressive name to avoid confrontation.

I “it’s impossible to use dynamic in a pejorative sense”
I “something not even a Congressman could object to” Reference:
I Bellman, R. E., Eye of the Hurricane, An Autobiography.
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Applications of Dynamic Programming

I Computational biology: Smith-Waterman algorithm for
sequence alignment .

I Operations research: Bellman-Ford algorithm for shortest path
routing in networks .

I Control theory: Viterbi algorithm for hidden Markov models.
I Computer science (theory, graphics, AI, . . . ): Unix diff command

for comparing two files.

Silvio Guimarães Dynamic programming 6 de 60
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Interval Scheduling

INSTANCE Nonempty set {(s(i), f (i)), 1 ≤ i ≤ n} of start
and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do not overlap.
I This problem models the situation where you

have a resource, a set of fixed jobs, and you want
to schedule as many jobs as possible.

I Greedy algorithm sort jobs in non decreasing
order of finish times. Add next job to current
subset only if it is compatible with
previously-selected jobs.
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Weighted Interval Scheduling

INSTANCE Nonempty set {(si , fi ), 1 ≤ i ≤ n} of start and finish times
of n jobs and a weight vi ≥ 0 associated with each job.

SOLUTION A set S of mutually compatible jobs such that
∑

i∈S vi is
maximised.

I Two jobs are compatible if they do not
overlap.

I This problem models the situation where you
have a resource, a set of fixed jobs, and you
want to schedule as many weighted jobs as
possible.

I Greedy algorithm can produce arbitrarily
bad results for this problem.

2

4

7

3

10

8

3

1



Weighted Interval Scheduling

Silvio Guimarães Dynamic programming 9 de 60

Weighted Interval Scheduling

INSTANCE Nonempty set {(si , fi ), 1 ≤ i ≤ n} of start and finish times
of n jobs and a weight vi ≥ 0 associated with each job.

SOLUTION A set S of mutually compatible jobs such that
∑

i∈S vi is
maximised.

I Two jobs are compatible if they do not
overlap.

I This problem models the situation where you
have a resource, a set of fixed jobs, and you
want to schedule as many weighted jobs as
possible.

I Greedy algorithm can produce arbitrarily
bad results for this problem.

2

4

7

3

10

8

3

1

7

8



Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .
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Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two elements above it.(

n

r

)
=

(
n − 1
r − 1

)
+

(
n − 1
r

)

I Proof: either we select the nth element or not . . .
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Sub-problems

I Let O be the optimal solution. Two cases to consider.

Case 1 job n is not in O.

O must be the optimal solution for
jobs {1, 2, . . . , n − 1}.

Case 2 job n is in O.

I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!
I Suggests finding optimal solution for sub-problems consisting of

jobs {1, 2, . . . , j − 1, j}, for all values of j .
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Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).
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Recursive Algorithm
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Algorithm: Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0
3 else
4 return max

(vj+Compute−opt(p(j)),Compute−opt(j-1))
5 end
I Correctness of algorithm follows by induction .
I What is the running time of the algorithm?

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1
and j − 2.
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Example of Recursive Algorithm

OPT(6) =

max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) =

max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.
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Memoisation
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I Store OPT(j) values in a cache and reuse them rather than
recompute them.

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j ] is not empty then
4 return M[j ];
5 else
6 M[j ]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j ] ;
8 end
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8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .
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From Recursion to Iteration
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I Unwind the recursion and convert it into iteration.
I Can compute values in M iteratively in O(n) time.
I Find-Solution works as before.

Algorithm: Iterative weighted interval scheduling
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 M[0] = 0;
2 foreach j ∈ [1, n] do
3 M[j] = max(vj+M[p(j)],M[j-1]);
4 end



Basic Outline of Dynamic Programming

I To solve a problem, we need a collection of sub-problems that
satisfy a few properties:
1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the

solutions to the sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to

“largest” .
4. There is an easy-to-compute recurrence that allows us to compute

the solution to a sub-problem from the solutions to some smaller
sub-problems.

I Difficulties in designing dynamic programming algorithms:
1. Which sub-problems to define?
2. How can we tie up sub-problems using a recurrence?
3. How do we order the sub-problems (to allow iterative computation

of optimal solutions to sub-problems)?

Silvio Guimarães Dynamic programming 19 de 60



Basic Outline of Dynamic Programming

I To solve a problem, we need a collection of sub-problems that
satisfy a few properties:
1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the

solutions to the sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to

“largest” .
4. There is an easy-to-compute recurrence that allows us to compute

the solution to a sub-problem from the solutions to some smaller
sub-problems.

I Difficulties in designing dynamic programming algorithms:
1. Which sub-problems to define?
2. How can we tie up sub-problems using a recurrence?
3. How do we order the sub-problems (to allow iterative computation

of optimal solutions to sub-problems)?

Silvio Guimarães Dynamic programming 19 de 60



Algorithm design and analysis

— Some exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



Maximum subarray problem

Silvio Guimarães Dynamic programming 21 de 60

The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.
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The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.

Formally, the task is to find indices i and j with 1 ≤ i ≤ j ≤ n,
such that

j∑
x=i

A[x ]

-2 1 -3 4 -1 2 1 -5 4-2 1 -3 4 -1 2 1 -5 4

Some properties of this problem are:
I If the array contains all non-negative numbers, then the problem is trivial
I If the array contains all non-positive numbers, then a solution is any

subarray of size 1;
I Several different sub-arrays may have the same maximum sum.
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A>0 x B>0

I If x > 0 then the answer is A + x + B
I If x < 0 then the answer may be

1. max{A,B} if A+ x < 0

2. max{A,B,A+ x + B} if A+ x > 0



Maximum subarray problem
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Longest increasing subsequence
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The longest increasing subsequence problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.
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Placing billboards
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The problem of placing billboards is defined as follows: You need
to decide where to put multiple advertisement on a highway of M
kms.

I There are n possible places where you can place an
advertisement given by x1, x2, · · · , xn in [0,M].

I Placing an advertisement at xi gives value ri .
I You cannot put two advertisements at distance < 5kms from

each other.
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Least Squares Problem

I Given scientific or statistical
data plotted on two axes.

I Find the “best” line that
“passes” through these points.

I How do we formalise the
problem?

Least Squares

INSTANCE Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.

SOLUTION Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.
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SOLUTION Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1
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∑
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∑
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∑

i x
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i − (
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i xi )
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i yi − a

∑
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n
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Segmented Least Squares

I Want to fit multiple lines through P .
I Each line must fit contiguous set of x-coordinates.
I Lines must minimise total error.
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Segmented Least Squares

INSTANCE Set P = {pi = (xi , yi ), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn

and a parameter C > 0

.

SOLUTION A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤
j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj)

+ Ck.
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Segmented Least Squares

INSTANCE Set P = {pi = (xi , yi ), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn and a parameter C > 0.

SOLUTION A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤
j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj) + Ck.A subset P ′ of P is a segment if 1 ≤ i < j ≤ n exist such that
P ′ = {(xi , yi ), (xi+1, yi+1), . . . , (xj−1, yj−1), (xj , yj)}.



Formulating the Recursion: I

I Observation: pn is part of some segment in the optimal solution.
This segment starts at some point pi .

I Let OPT(i) be the optimal value for the points {p1, p2, . . . , pi}.
I Let ei ,j denote the minimum error of any line that fits
{pi , p2, . . . , pj}.

I We want to compute OPT(n).

I If the last segment in the optimal partition is {pi , pi+1, . . . , pn},
then

OPT(n) = ei ,n + C + OPT(i − 1)
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Formulating the Recursion: II

I Consider the sub-problem on the points {p1, p2, . . . pj}
I To obtain OPT(j), if the last segment in the optimal partition is
{pi , pi+1, . . . , pj}, then

OPT(j) = ei ,j + C + OPT(i − 1)

I Since i can take only j distinct values,

OPT(j) = min
1≤i≤j

(ei ,j + C + OPT(i − 1))

I Segment {pi , pi+1, . . . pj} is part of the optimal solution for this
sub-problem if and only if the minimum value of OPT(j) is
obtained using index i . solution
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Dynamic Programming Algorithm
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OPT (j) =

{
0, if j = 0
min1≤i≤j(eij + c + OPT [i − 1]), otherwise

Algorithm: Segmented least squares: an iterative algorithm
input : A set of n points pi
output: A set of compatible jobs A

1 M[0] = 0;
2 for j=1 to n do
3 for i=1 to j do
4 compute the eij for the segment pi , · · · , pj ;
5 end
6 end
7 for j=1 to n do
8 M[j] = min1≤i≤j(eij + c +M[i − 1]);
9 end
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OPT (j) =

{
0, if j = 0
min1≤i≤j(eij + c + OPT [i − 1]), otherwise

Algorithm: Segmented least squares: an iterative algorithm
input : A set of n points pi
output: A set of compatible jobs A

1 M[0] = 0;
2 for j=1 to n do
3 for i=1 to j do
4 compute the eij for the segment pi , · · · , pj ;
5 end
6 end
7 for j=1 to n do
8 M[j] = min1≤i≤j(eij + c +M[i − 1]);
9 end

I Running time is O(n3) , can be improved to O(n2).

I We can find the segments in the optimal solution by backtracking .
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Sequence Similarity

I Given two strings, measure how similar they are.
I Given a database of strings and a query string, compute the string

most similar to query in the database.
I Applications:

I Online searches (Web, dictionary).
I Spell-checkers.
I Computational biology
I Speech recognition.
I Basis for Unix diff.
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Defining Sequence Similarity
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o c u r r a n c e -

o c c u r r e n c e
6 mismatches, 1 gap

I Edit distance model: how many changes must you to make to one
string to transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.
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Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.
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Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

o c - u r r a n c e

o c c u r r e n c e

I A matching of these sets is a set M of ordered pairs such that
1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ m and
2. no index from x (respectively, from y) appears as the first

(respectively, second) element in more than one ordered pair.

I A matching M is an alignment if there are no “crossing pairs” in M :
if (i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.
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Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

o c - u r r a n c e

o c c u r r e n c e

I A matching M is an alignment if there are no “crossing pairs” in M :
if (i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.

I The pair xi -yj and xi ′-yj ′ cross if i < i ′’, but j − j ′.

cost(M) =
∑

(xi ,yj )∈M

αxiyj︸ ︷︷ ︸
mismatch

+
∑

i :xi unmatched

δ +
∑

j :xj unmatched

δ

︸ ︷︷ ︸
gaps



Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.
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Dynamic Programming Algorithm

OPT(i , j) =


jδ, if i = 0

min


αxiyj + OPT(i − 1, j − 1),
δ + OPT(i − 1, j),
δ + OPT(i , j − 1)

otherwise

iδ, if j = 0

I Running time is O(mn). Space used in O(mn).

I Can compute OPT(m, n) in O(mn) time and O(m + n) space
(Hirschberg 1975, Chapter 6.7).

I Can compute alignment in the same bounds by combining dynamic
programming with divide and conquer.
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the longest subsequence which is in two sequences x and y .

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 if there exists
a strictly increasing sequence of integers (k0, k1, . . . , ki−1) such that for
0 ≤ k ≤ i − 1. A word w is a longest common subsequence of x and y if
w is a subsequence of x, a subsequence of y and its length is maximal.
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The longest commom subsequence problem is the task of finding
the longest subsequence which is in two sequences x and y .

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 if there exists
a strictly increasing sequence of integers (k0, k1, . . . , ki−1) such that for
0 ≤ k ≤ i − 1. A word w is a longest common subsequence of x and y if
w is a subsequence of x, a subsequence of y and its length is maximal.

C T A C C G A

T A C A T T G T

Some properties of this problem are:
I the lenght of the longest subsequence must be maximal;
I may have several longest subsequences with the same size;
I it is possible to identify the subsequence by backtracking
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OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0
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elements are in sorted order , lowest to highest, and in which the
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Shortest Path Problem

I G = (V ,E ) is a connected directed graph. Each edge e has a
length le ≥ 0 .

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

each node in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E ), a function l : E → R+, and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.
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I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).
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I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?



Proof of Correctness

Silvio Guimarães Dynamic programming 51 de 60

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?

s

x

u

y

v

p′

pu

The alternate s − v pathP
through x and y already too long
by the time it had left the set S



Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths.

I Union of shortest paths output form a tree. Why?
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Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? .
I In each iteration, for each node v 6∈ S , compute

mine=(u,v),u∈S d(u) + le .
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Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s
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3 Initially d [s] = 0 and S = s;

4 while S 6= V do
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d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.

I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked?
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Single Source Shortest Path Problem

I G = (V ,E ) is a connected directed graph. Each edge e has a
length le . Note that the weights may be negative.

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

all other nodes in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E ), a function l : E → R , and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.
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Dijkstra – Can fail if negative edge costs.
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If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.

a

b

d

c

a

1

3

-6

-5

2



Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 57 de 60

If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.
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The Bellman-Ford algorithm is a way to find single source
shortest paths in a graph with negative edge weights (but no
negative cycles).
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OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges
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OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

OPT (i , v) =


0, if i = 0

min

{
OPT (i − 1, v)
min{OPT (i − 1,w) + cvw}

, otherwise
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Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E ), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v ] = d [i − 1, v ]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v ] = min{d [i , v ], d [i − 1,w ] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.
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1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;
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successor for each table entry.

How to detect negative cycles?
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Compute the shortest path from e to all other nodes!
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