
Algorithm design and analysis

— Dynamic programming —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm design and analysis

— Dynamic programming: fundamentals —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 3 de 60

Greedy

Build up a solution incrementally , myopically optimizing some
local criterion.

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 3 de 60

Greedy

Build up a solution incrementally , myopically optimizing some
local criterion.

Divide-and-conquer

Break up a problem into sub-problems , solve each sub-problem

independently , and combine solution to sub-problems to form
solution to original problem.

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 3 de 60

Greedy

Build up a solution incrementally , myopically optimizing some
local criterion.

Divide-and-conquer

Break up a problem into sub-problems , solve each sub-problem

independently , and combine solution to sub-problems to form
solution to original problem.

Dynamic programming.

Break up a problem into a series of overlapping sub-problems,
and build up solutions to larger and larger sub-problems

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 4 de 60

1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
I Pro: natural approach to algorithm design.
I Con: many greedy approaches a problem, but only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Pro: usually reduces time for a problem known to be solvable in

polynomial time.
I Con: conquer step can be very hard to implement efficiently.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to

larger and larger sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is

polynomial in the size of the input.

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 4 de 60

1. Goal: design efficient (polynomial-time) algorithms.
2. Greedy

I Pro: natural approach to algorithm design.
I Con: many greedy approaches a problem, but only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Pro: usually reduces time for a problem known to be solvable in

polynomial time.
I Con: conquer step can be very hard to implement efficiently.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to

larger and larger sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is

polynomial in the size of the input.

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 4 de 60

1. Goal: design efficient (polynomial-time) algorithms.
2. Greedy

I Pro: natural approach to algorithm design.
I Con: many greedy approaches a problem, but only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Pro: usually reduces time for a problem known to be solvable in

polynomial time.
I Con: conquer step can be very hard to implement efficiently.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to

larger and larger sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is

polynomial in the size of the input.

Algorithm Design Techniques

Silvio Guimarães Dynamic programming 4 de 60

1. Goal: design efficient (polynomial-time) algorithms.
2. Greedy

I Pro: natural approach to algorithm design.
I Con: many greedy approaches a problem, but only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Pro: usually reduces time for a problem known to be solvable in

polynomial time.
I Con: conquer step can be very hard to implement efficiently.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to

larger and larger sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is

polynomial in the size of the input.

History of Dynamic Programming

I Bellman pioneered the systematic study of dynamic programming
in the 1950s.

I Dynamic programming = “planning over time.”
I The Secretary of Defense at that time was hostile to mathematical

research.
I Bellman sought an impressive name to avoid confrontation.

I “it’s impossible to use dynamic in a pejorative sense”
I “something not even a Congressman could object to” Reference:
I Bellman, R. E., Eye of the Hurricane, An Autobiography.

Silvio Guimarães Dynamic programming 5 de 60

History of Dynamic Programming

I Bellman pioneered the systematic study of dynamic programming
in the 1950s.

I Dynamic programming = “planning over time.”
I The Secretary of Defense at that time was hostile to mathematical

research.
I Bellman sought an impressive name to avoid confrontation.

I “it’s impossible to use dynamic in a pejorative sense”
I “something not even a Congressman could object to” Reference:
I Bellman, R. E., Eye of the Hurricane, An Autobiography.

Silvio Guimarães Dynamic programming 5 de 60

Applications of Dynamic Programming

I Computational biology: Smith-Waterman algorithm for
sequence alignment .

I Operations research: Bellman-Ford algorithm for shortest path
routing in networks .

I Control theory: Viterbi algorithm for hidden Markov models.
I Computer science (theory, graphics, AI, . . .): Unix diff command

for comparing two files.

Silvio Guimarães Dynamic programming 6 de 60

Algorithm design and analysis

— Weighted interval scheduling —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Review: Interval Scheduling

Silvio Guimarães Dynamic programming 8 de 60

Interval Scheduling

INSTANCE Nonempty set {(s(i), f (i)), 1 ≤ i ≤ n} of start
and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do not overlap.
I This problem models the situation where you

have a resource, a set of fixed jobs, and you want
to schedule as many jobs as possible.

I Greedy algorithm sort jobs in non decreasing
order of finish times. Add next job to current
subset only if it is compatible with
previously-selected jobs.

h

g

f

e

d

c

b

a

Review: Interval Scheduling

Silvio Guimarães Dynamic programming 8 de 60

Interval Scheduling

INSTANCE Nonempty set {(s(i), f (i)), 1 ≤ i ≤ n} of start
and finish times of n jobs.

SOLUTION The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do not overlap.
I This problem models the situation where you

have a resource, a set of fixed jobs, and you want
to schedule as many jobs as possible.

I Greedy algorithm sort jobs in non decreasing
order of finish times. Add next job to current
subset only if it is compatible with
previously-selected jobs.

h

g

f

e

d

c

b

a

h

e

b

Weighted Interval Scheduling

Silvio Guimarães Dynamic programming 9 de 60

Weighted Interval Scheduling

INSTANCE Nonempty set {(si , fi), 1 ≤ i ≤ n} of start and finish times
of n jobs and a weight vi ≥ 0 associated with each job.

SOLUTION A set S of mutually compatible jobs such that
∑

i∈S vi is
maximised.

I Two jobs are compatible if they do not
overlap.

I This problem models the situation where you
have a resource, a set of fixed jobs, and you
want to schedule as many weighted jobs as
possible.

I Greedy algorithm can produce arbitrarily
bad results for this problem.

2

4

7

3

10

8

3

1

Weighted Interval Scheduling

Silvio Guimarães Dynamic programming 9 de 60

Weighted Interval Scheduling

INSTANCE Nonempty set {(si , fi), 1 ≤ i ≤ n} of start and finish times
of n jobs and a weight vi ≥ 0 associated with each job.

SOLUTION A set S of mutually compatible jobs such that
∑

i∈S vi is
maximised.

I Two jobs are compatible if they do not
overlap.

I This problem models the situation where you
have a resource, a set of fixed jobs, and you
want to schedule as many weighted jobs as
possible.

I Greedy algorithm can produce arbitrarily
bad results for this problem.

2

4

7

3

10

8

3

1

7

8

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

2

4

7

3

10

8

3

1

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

2

4

7

3

10

8

3

1

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

3

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

8

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

11

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

3

3

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

10

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

7

8

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

4

1

Approach

Silvio Guimarães Dynamic programming 10 de 60

I Sort jobs in increasing order of finish time and relabel:
f1 ≤ f2 ≤ . . . ≤ fn.

I Request i comes before request j if i < j .

I p(j) is the largest index i < j
such that job i is compatible
with job j . p(j) = 0 if there is
no such job i .

I We will develop optimal
algorithm from very obvious
statements about the problem.2

4

7

3

10

8

3

1

2

3

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two elements above it.(

n

r

)
=

(
n − 1
r − 1

)
+

(
n − 1
r

)

I Proof: either we select the nth element or not . . .

Silvio Guimarães Dynamic programming 11 de 60

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two elements above it.

(
n

r

)
=

(
n − 1
r − 1

)
+

(
n − 1
r

)

I Proof: either we select the nth element or not . . .

Silvio Guimarães Dynamic programming 11 de 60

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two elements above it.(

n

r

)
=

(
n − 1
r − 1

)
+

(
n − 1
r

)

I Proof: either we select the nth element or not . . .

Silvio Guimarães Dynamic programming 11 de 60

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two elements above it.(

n

r

)
=

(
n − 1
r − 1

)
+

(
n − 1
r

)
I Proof: either we select the nth element or not . . .

Silvio Guimarães Dynamic programming 11 de 60

Sub-problems

I Let O be the optimal solution. Two cases to consider.

Case 1 job n is not in O.

O must be the optimal solution for
jobs {1, 2, . . . , n − 1}.

Case 2 job n is in O.

I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!
I Suggests finding optimal solution for sub-problems consisting of

jobs {1, 2, . . . , j − 1, j}, for all values of j .

Silvio Guimarães Dynamic programming 12 de 60

Sub-problems

I Let O be the optimal solution. Two cases to consider.

Case 1 job n is not in O. O must be the optimal solution for
jobs {1, 2, . . . , n − 1}.

Case 2 job n is in O.

I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!
I Suggests finding optimal solution for sub-problems consisting of

jobs {1, 2, . . . , j − 1, j}, for all values of j .

Silvio Guimarães Dynamic programming 12 de 60

Sub-problems

I Let O be the optimal solution. Two cases to consider.

Case 1 job n is not in O. O must be the optimal solution for
jobs {1, 2, . . . , n − 1}.

Case 2 job n is in O.
I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!
I Suggests finding optimal solution for sub-problems consisting of

jobs {1, 2, . . . , j − 1, j}, for all values of j .

Silvio Guimarães Dynamic programming 12 de 60

Sub-problems

I Let O be the optimal solution. Two cases to consider.

Case 1 job n is not in O. O must be the optimal solution for
jobs {1, 2, . . . , n − 1}.

Case 2 job n is in O.
I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!

I Suggests finding optimal solution for sub-problems consisting of
jobs {1, 2, . . . , j − 1, j}, for all values of j .

Silvio Guimarães Dynamic programming 12 de 60

Sub-problems

I Let O be the optimal solution. Two cases to consider.

Case 1 job n is not in O. O must be the optimal solution for
jobs {1, 2, . . . , n − 1}.

Case 2 job n is in O.
I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!
I Suggests finding optimal solution for sub-problems consisting of

jobs {1, 2, . . . , j − 1, j}, for all values of j .

Silvio Guimarães Dynamic programming 12 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):
Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj :

OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj :

OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj?

If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j)
be the value of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).
I To compute OPT(j):

Case 1: j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2: j ∈ Oj : OPT(j) = vj + OPT(p(j))

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I When does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

Silvio Guimarães Dynamic programming 13 de 60

Recursive Algorithm

Silvio Guimarães Dynamic programming 14 de 60

Algorithm: Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0
3 else
4 return max

(vj+Compute−opt(p(j)),Compute−opt(j-1))
5 end
I Correctness of algorithm follows by induction .
I What is the running time of the algorithm?

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1
and j − 2.

Recursive Algorithm

Silvio Guimarães Dynamic programming 14 de 60

Algorithm: Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0
3 else
4 return max

(vj+Compute−opt(p(j)),Compute−opt(j-1))
5 end
I Correctness of algorithm follows by induction .
I What is the running time of the algorithm? Can be

exponential in n.

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1
and j − 2.

Recursive Algorithm

Silvio Guimarães Dynamic programming 14 de 60

Algorithm: Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0
3 else
4 return max

(vj+Compute−opt(p(j)),Compute−opt(j-1))
5 end
I Correctness of algorithm follows by induction .
I What is the running time of the algorithm? Can be

exponential in n.
I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1

and j − 2.

Example of Recursive Algorithm

OPT(6) =

max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) =

max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) =

max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1))

= 4

OPT(1) = v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2))

= 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2)) = 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3)) = 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2)) = 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4)) = 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3)) = 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2)) = 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5)) = 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4)) = 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3)) = 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2)) = 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5)) = 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4)) = 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3)) = 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2)) = 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0
I Optimal solution is

job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1+ OPT(3),OPT(5)) = 8

OPT(5) = max(v5 + OPT(p(5)),OPT(4)) = max(2+ OPT(3),OPT(4)) = 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7+ OPT(0),OPT(3)) = 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4+ OPT(1),OPT(2)) = 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4+ OPT(0),OPT(1)) = 4

OPT(1) = v1 = 2

OPT(0) = 0
I Optimal solution is job 5, job 3, and job 1.

Silvio Guimarães Dynamic programming 15 de 60

Memoisation

Silvio Guimarães Dynamic programming 16 de 60

I Store OPT(j) values in a cache and reuse them rather than
recompute them.

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?

I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.

I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

Running Time of Memoisation

Silvio Guimarães Dynamic programming 17 de 60

Algorithm: M-Compute-opt
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 if j = 0 then
2 return 0;
3 else if M[j] is not empty then
4 return M[j];
5 else
6 M[j]= max

(vj+M-Compute−opt(p(j)),M-Compute−opt(j-1));
7 return M[j] ;
8 end

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.

I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.

I Therefore, total number of recursive calls is O(n) .

From Recursion to Iteration

Silvio Guimarães Dynamic programming 18 de 60

I Unwind the recursion and convert it into iteration.
I Can compute values in M iteratively in O(n) time.
I Find-Solution works as before.

Algorithm: Iterative weighted interval scheduling
input : A set of weighted jobs R , index j and largest

compatible indices.
output: A set of compatible jobs A

1 M[0] = 0;
2 foreach j ∈ [1, n] do
3 M[j] = max(vj+M[p(j)],M[j-1]);
4 end

Basic Outline of Dynamic Programming

I To solve a problem, we need a collection of sub-problems that
satisfy a few properties:
1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the

solutions to the sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to

“largest” .
4. There is an easy-to-compute recurrence that allows us to compute

the solution to a sub-problem from the solutions to some smaller
sub-problems.

I Difficulties in designing dynamic programming algorithms:
1. Which sub-problems to define?
2. How can we tie up sub-problems using a recurrence?
3. How do we order the sub-problems (to allow iterative computation

of optimal solutions to sub-problems)?

Silvio Guimarães Dynamic programming 19 de 60

Basic Outline of Dynamic Programming

I To solve a problem, we need a collection of sub-problems that
satisfy a few properties:
1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the

solutions to the sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to

“largest” .
4. There is an easy-to-compute recurrence that allows us to compute

the solution to a sub-problem from the solutions to some smaller
sub-problems.

I Difficulties in designing dynamic programming algorithms:
1. Which sub-problems to define?
2. How can we tie up sub-problems using a recurrence?
3. How do we order the sub-problems (to allow iterative computation

of optimal solutions to sub-problems)?

Silvio Guimarães Dynamic programming 19 de 60

Algorithm design and analysis

— Some exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Maximum subarray problem

Silvio Guimarães Dynamic programming 21 de 60

The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.

Maximum subarray problem

Silvio Guimarães Dynamic programming 21 de 60

The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.

Formally, the task is to find indices i and j with 1 ≤ i ≤ j ≤ n,
such that

j∑
x=i

A[x]

Maximum subarray problem

Silvio Guimarães Dynamic programming 21 de 60

The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.

Formally, the task is to find indices i and j with 1 ≤ i ≤ j ≤ n,
such that

j∑
x=i

A[x]

-2 1 -3 4 -1 2 1 -5 4

Maximum subarray problem

Silvio Guimarães Dynamic programming 21 de 60

The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.

Formally, the task is to find indices i and j with 1 ≤ i ≤ j ≤ n,
such that

j∑
x=i

A[x]

-2 1 -3 4 -1 2 1 -5 4-2 1 -3 4 -1 2 1 -5 4

Maximum subarray problem

Silvio Guimarães Dynamic programming 21 de 60

The maximum sum subarray problem is the task of finding a
contiguous subarray with the largest sum , within a given
one-dimensional array A[1...n] of numbers.

Formally, the task is to find indices i and j with 1 ≤ i ≤ j ≤ n,
such that

j∑
x=i

A[x]

-2 1 -3 4 -1 2 1 -5 4-2 1 -3 4 -1 2 1 -5 4

Some properties of this problem are:
I If the array contains all non-negative numbers, then the problem is trivial
I If the array contains all non-positive numbers, then a solution is any

subarray of size 1;
I Several different sub-arrays may have the same maximum sum.

Maximum subarray problem

Silvio Guimarães Dynamic programming 22 de 60

A>0 x B>0

Maximum subarray problem

Silvio Guimarães Dynamic programming 22 de 60

A>0 x B>0

I If x > 0 then the answer is A + x + B
I If x < 0 then the answer may be

1. max{A,B} if A+ x < 0

2. max{A,B,A+ x + B} if A+ x > 0

Maximum subarray problem

Silvio Guimarães Dynamic programming 23 de 60

Longest increasing subsequence

Silvio Guimarães Dynamic programming 24 de 60

The longest increasing subsequence problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

Longest increasing subsequence

Silvio Guimarães Dynamic programming 24 de 60

The longest increasing subsequence problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

Longest increasing subsequence

Silvio Guimarães Dynamic programming 24 de 60

The longest increasing subsequence problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

1 2 3 3 4 4 3 0 1L:

max{L(1), L(2), ..., L(n)}

Longest increasing subsequence

Silvio Guimarães Dynamic programming 24 de 60

The longest increasing subsequence problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

1 2 3 3 4 4 3 0 1L:

max{L(1), L(2), ..., L(n)}

Longest increasing subsequence

Silvio Guimarães Dynamic programming 25 de 60

Placing billboards

Silvio Guimarães Dynamic programming 26 de 60

The problem of placing billboards is defined as follows: You need
to decide where to put multiple advertisement on a highway of M
kms.

I There are n possible places where you can place an
advertisement given by x1, x2, · · · , xn in [0,M].

I Placing an advertisement at xi gives value ri .
I You cannot put two advertisements at distance < 5kms from

each other.

Placing billboards

Silvio Guimarães Dynamic programming 26 de 60

The problem of placing billboards is defined as follows: You need
to decide where to put multiple advertisement on a highway of M
kms.

I There are n possible places where you can place an
advertisement given by x1, x2, · · · , xn in [0,M].

I Placing an advertisement at xi gives value ri .
I You cannot put two advertisements at distance < 5kms from

each other.

06 07 12 14 18 19

Placing billboards

Silvio Guimarães Dynamic programming 26 de 60

The problem of placing billboards is defined as follows: You need
to decide where to put multiple advertisement on a highway of M
kms.

I There are n possible places where you can place an
advertisement given by x1, x2, · · · , xn in [0,M].

I Placing an advertisement at xi gives value ri .
I You cannot put two advertisements at distance < 5kms from

each other.

06 07 12 14 18 19

05 06 05 01 02 03r:

Placing billboards

Silvio Guimarães Dynamic programming 26 de 60

The problem of placing billboards is defined as follows: You need
to decide where to put multiple advertisement on a highway of M
kms.

I There are n possible places where you can place an
advertisement given by x1, x2, · · · , xn in [0,M].

I Placing an advertisement at xi gives value ri .
I You cannot put two advertisements at distance < 5kms from

each other.

06 07 12 14 18 19

05 06 05 01 02 03r:

Placing billboards

Silvio Guimarães Dynamic programming 27 de 60

Algorithm design and analysis

— Segmented Least Squares —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Least Squares Problem

I Given scientific or statistical
data plotted on two axes.

I Find the “best” line that
“passes” through these points.

I How do we formalise the
problem?

Least Squares

INSTANCE Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.

SOLUTION Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

Silvio Guimarães Dynamic programming 29 de 60

Least Squares Problem

I Given scientific or statistical
data plotted on two axes.

I Find the “best” line that
“passes” through these points.

I How do we formalise the
problem?

Least Squares

INSTANCE Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.

SOLUTION Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

Silvio Guimarães Dynamic programming 29 de 60

Least Squares Problem

I Given scientific or statistical
data plotted on two axes.

I Find the “best” line that
“passes” through these points.

I How do we formalise the
problem?

Least Squares

INSTANCE Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.

SOLUTION Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

Silvio Guimarães Dynamic programming 29 de 60

Least Squares Problem

Least Squares

INSTANCE Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.

SOLUTION Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

I Solution is achieved by

a =
n
∑

i xiyi − (
∑

i xi) (
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)

2 and b =

∑
i yi − a

∑
i xi

n

Silvio Guimarães Dynamic programming 30 de 60

Segmented Least Squares

I Want to fit multiple lines through P .
I Each line must fit contiguous set of x-coordinates.
I Lines must minimise total error.

Silvio Guimarães Dynamic programming 31 de 60

Segmented Least Squares

I Want to fit multiple lines through P .
I Each line must fit contiguous set of x-coordinates.
I Lines must minimise total error.

Silvio Guimarães Dynamic programming 31 de 60

Segmented Least Squares

I Want to fit multiple lines through P .
I Each line must fit contiguous set of x-coordinates.
I Lines must minimise total error.

Silvio Guimarães Dynamic programming 31 de 60

Segmented Least Squares

Silvio Guimarães Dynamic programming 32 de 60

Segmented Least Squares

INSTANCE Set P = {pi = (xi , yi), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn

and a parameter C > 0

.

SOLUTION A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤
j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj)

+ Ck.

Segmented Least Squares

Silvio Guimarães Dynamic programming 32 de 60

Segmented Least Squares

INSTANCE Set P = {pi = (xi , yi), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn and a parameter C > 0.

SOLUTION A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤
j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj)

+ Ck.

Segmented Least Squares

Silvio Guimarães Dynamic programming 32 de 60

Segmented Least Squares

INSTANCE Set P = {pi = (xi , yi), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn and a parameter C > 0.

SOLUTION A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤
j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj) + Ck.A subset P ′ of P is a segment if 1 ≤ i < j ≤ n exist such that
P ′ = {(xi , yi), (xi+1, yi+1), . . . , (xj−1, yj−1), (xj , yj)}.

Formulating the Recursion: I

I Observation: pn is part of some segment in the optimal solution.
This segment starts at some point pi .

I Let OPT(i) be the optimal value for the points {p1, p2, . . . , pi}.
I Let ei ,j denote the minimum error of any line that fits
{pi , p2, . . . , pj}.

I We want to compute OPT(n).

I If the last segment in the optimal partition is {pi , pi+1, . . . , pn},
then

OPT(n) = ei ,n + C + OPT(i − 1)

Silvio Guimarães Dynamic programming 33 de 60

Formulating the Recursion: II

I Consider the sub-problem on the points {p1, p2, . . . pj}
I To obtain OPT(j), if the last segment in the optimal partition is
{pi , pi+1, . . . , pj}, then

OPT(j) = ei ,j + C + OPT(i − 1)

I Since i can take only j distinct values,

OPT(j) = min
1≤i≤j

(ei ,j + C + OPT(i − 1))

I Segment {pi , pi+1, . . . pj} is part of the optimal solution for this
sub-problem if and only if the minimum value of OPT(j) is
obtained using index i . solution

Silvio Guimarães Dynamic programming 34 de 60

Formulating the Recursion: II

I Consider the sub-problem on the points {p1, p2, . . . pj}
I To obtain OPT(j), if the last segment in the optimal partition is
{pi , pi+1, . . . , pj}, then

OPT(j) = ei ,j + C + OPT(i − 1)

I Since i can take only j distinct values,

OPT(j) = min
1≤i≤j

(ei ,j + C + OPT(i − 1))

I Segment {pi , pi+1, . . . pj} is part of the optimal solution for this
sub-problem if and only if the minimum value of OPT(j) is
obtained using index i . solution

Silvio Guimarães Dynamic programming 34 de 60

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 35 de 60

OPT (j) =

{
0, if j = 0
min1≤i≤j(eij + c + OPT [i − 1]), otherwise

Algorithm: Segmented least squares: an iterative algorithm
input : A set of n points pi
output: A set of compatible jobs A

1 M[0] = 0;
2 for j=1 to n do
3 for i=1 to j do
4 compute the eij for the segment pi , · · · , pj ;
5 end
6 end
7 for j=1 to n do
8 M[j] = min1≤i≤j(eij + c +M[i − 1]);
9 end

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 35 de 60

OPT (j) =

{
0, if j = 0
min1≤i≤j(eij + c + OPT [i − 1]), otherwise

Algorithm: Segmented least squares: an iterative algorithm
input : A set of n points pi
output: A set of compatible jobs A

1 M[0] = 0;
2 for j=1 to n do
3 for i=1 to j do
4 compute the eij for the segment pi , · · · , pj ;
5 end
6 end
7 for j=1 to n do
8 M[j] = min1≤i≤j(eij + c +M[i − 1]);
9 end

I Running time is O(n3) , can be improved to O(n2).

I We can find the segments in the optimal solution by backtracking .

Algorithm design and analysis

— Sequence alignment —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Sequence Similarity

I Given two strings, measure how similar they are.
I Given a database of strings and a query string, compute the string

most similar to query in the database.
I Applications:

I Online searches (Web, dictionary).
I Spell-checkers.
I Computational biology
I Speech recognition.
I Basis for Unix diff.

Silvio Guimarães Dynamic programming 37 de 60

Defining Sequence Similarity

Silvio Guimarães Dynamic programming 38 de 60

o c u r r a n c e -

o c c u r r e n c e
6 mismatches, 1 gap

I Edit distance model: how many changes must you to make to one
string to transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.

Defining Sequence Similarity

Silvio Guimarães Dynamic programming 38 de 60

o c u r r a n c e -

o c c u r r e n c e
6 mismatches, 1 gap

o c - u r r a n c e

o c c u r r e n c e
1 mismatch, 1 gap

I Edit distance model: how many changes must you to make to one
string to transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.

Defining Sequence Similarity

Silvio Guimarães Dynamic programming 38 de 60

o c u r r a n c e -

o c c u r r e n c e
6 mismatches, 1 gap

o c - u r r a n c e

o c c u r r e n c e
1 mismatch, 1 gap

o c - u r r - a n c e

o c c u r r e - n c e
0 mismatches, 3 gaps

I Edit distance model: how many changes must you to make to one
string to transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.

Defining Sequence Similarity

Silvio Guimarães Dynamic programming 38 de 60

o c u r r a n c e -

o c c u r r e n c e
6 mismatches, 1 gap

o c - u r r a n c e

o c c u r r e n c e
1 mismatch, 1 gap

o c - u r r - a n c e

o c c u r r e - n c e
0 mismatches, 3 gaps

I Edit distance model: how many changes must you to make to one
string to transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.

Edit Distance

Silvio Guimarães Dynamic programming 39 de 60

Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

Edit Distance

Silvio Guimarães Dynamic programming 39 de 60

Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

o c - u r r a n c e

o c c u r r e n c e

Edit Distance

Silvio Guimarães Dynamic programming 39 de 60

Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

o c - u r r a n c e

o c c u r r e n c e

I A matching of these sets is a set M of ordered pairs such that
1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ m and
2. no index from x (respectively, from y) appears as the first

(respectively, second) element in more than one ordered pair.

I A matching M is an alignment if there are no “crossing pairs” in M :
if (i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.

Edit Distance

Silvio Guimarães Dynamic programming 39 de 60

Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

o c - u r r a n c e

o c c u r r e n c e

I A matching M is an alignment if there are no “crossing pairs” in M :
if (i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.

I The pair xi -yj and xi ′-yj ′ cross if i < i ′’, but j − j ′.

Edit Distance

Silvio Guimarães Dynamic programming 39 de 60

Edit distance

INSTANCE Let two string x = x1x2x3 . . . xm and y =
y1y2 . . . yn

SOLUTION An alignment of minimum cost.

o c - u r r a n c e

o c c u r r e n c e

I A matching M is an alignment if there are no “crossing pairs” in M :
if (i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.

I The pair xi -yj and xi ′-yj ′ cross if i < i ′’, but j − j ′.

cost(M) =
∑

(xi ,yj)∈M

αxiyj︸ ︷︷ ︸
mismatch

+
∑

i :xi unmatched

δ +
∑

j :xj unmatched

δ

︸ ︷︷ ︸
gaps

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .
I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.

I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.

I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.

I (i , j) ∈ M if and only if minimum is achieved by the first term.
I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases?

OPT(i , 0) = OPT(0, i) = iδ.

Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?
I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.
I OPT(i , j) = min cost of aligning x = x1 . . . xi and y = y1 . . . yj .

I Case 1: OPT matches xi -yj so (i , j) ∈ M:

OPT(i , j) = αxiyj + OPT(i − 1, j − 1)

.
I Case 2a: OPT leaves xi unmatched, so i not matched:

OPT(i , j) = δ + OPT(i − 1, j)

.
I Case 2b: OPT leaves yj unmatched, so j not matched:

OPT(i , j) = δ + OPT(i , j − 1)

.
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.
Silvio Guimarães Dynamic programming 40 de 60

Dynamic Programming Algorithm

OPT(i , j) =


jδ, if i = 0

min


αxiyj + OPT(i − 1, j − 1),
δ + OPT(i − 1, j),
δ + OPT(i , j − 1)

otherwise

iδ, if j = 0

I Running time is O(mn). Space used in O(mn).

I Can compute OPT(m, n) in O(mn) time and O(m + n) space
(Hirschberg 1975, Chapter 6.7).

I Can compute alignment in the same bounds by combining dynamic
programming with divide and conquer.

Silvio Guimarães Dynamic programming 41 de 60

Dynamic Programming Algorithm

OPT(i , j) =


jδ, if i = 0

min


αxiyj + OPT(i − 1, j − 1),
δ + OPT(i − 1, j),
δ + OPT(i , j − 1)

otherwise

iδ, if j = 0

I Running time is O(mn). Space used in O(mn).
I Can compute OPT(m, n) in O(mn) time and O(m + n) space

(Hirschberg 1975, Chapter 6.7).

I Can compute alignment in the same bounds by combining dynamic
programming with divide and conquer.

Silvio Guimarães Dynamic programming 41 de 60

Dynamic Programming Algorithm

OPT(i , j) =


jδ, if i = 0

min


αxiyj + OPT(i − 1, j − 1),
δ + OPT(i − 1, j),
δ + OPT(i , j − 1)

otherwise

iδ, if j = 0

I Running time is O(mn). Space used in O(mn).
I Can compute OPT(m, n) in O(mn) time and O(m + n) space

(Hirschberg 1975, Chapter 6.7).
I Can compute alignment in the same bounds by combining dynamic

programming with divide and conquer.

Silvio Guimarães Dynamic programming 41 de 60

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 42 de 60

Longest commom subsequence

Silvio Guimarães Dynamic programming 43 de 60

The longest commom subsequence problem is the task of finding
the longest subsequence which is in two sequences x and y .

Longest commom subsequence

Silvio Guimarães Dynamic programming 43 de 60

The longest commom subsequence problem is the task of finding
the longest subsequence which is in two sequences x and y .

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 if there exists
a strictly increasing sequence of integers (k0, k1, . . . , ki−1) such that for
0 ≤ k ≤ i − 1. A word w is a longest common subsequence of x and y if
w is a subsequence of x, a subsequence of y and its length is maximal.

Longest commom subsequence

Silvio Guimarães Dynamic programming 43 de 60

The longest commom subsequence problem is the task of finding
the longest subsequence which is in two sequences x and y .

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 if there exists
a strictly increasing sequence of integers (k0, k1, . . . , ki−1) such that for
0 ≤ k ≤ i − 1. A word w is a longest common subsequence of x and y if
w is a subsequence of x, a subsequence of y and its length is maximal.

C T A C C G A

T A C A T T G T

Longest commom subsequence

Silvio Guimarães Dynamic programming 43 de 60

The longest commom subsequence problem is the task of finding
the longest subsequence which is in two sequences x and y .

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 if there exists
a strictly increasing sequence of integers (k0, k1, . . . , ki−1) such that for
0 ≤ k ≤ i − 1. A word w is a longest common subsequence of x and y if
w is a subsequence of x, a subsequence of y and its length is maximal.

C T A C C G A

T A C A T T G T

Some properties of this problem are:
I the lenght of the longest subsequence must be maximal;
I may have several longest subsequences with the same size;
I it is possible to identify the subsequence by backtracking

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C

T
A
C
A
C
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T
A
C
A
C
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A
C
A
C
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A 0 0 1 2 2 2
C
A
C
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A 0 0 1 2 2 2
C 0 1 1 2 3 3
A
C
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A 0 0 1 2 2 2
C 0 1 1 2 3 3
A 0 1 1 2 3 3
C
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A 0 0 1 2 2 2
C 0 1 1 2 3 3
A 0 1 1 2 3 3
C 0 1 1 2 3 4
G

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A 0 0 1 2 2 2
C 0 1 1 2 3 3
A 0 1 1 2 3 3
C 0 1 1 2 3 4
G 0 1 1 2 3 4

Dynamic Programming Algorithm

Silvio Guimarães Dynamic programming 44 de 60

OPT(i , j) =


0, if i = 0
1+ OPT(i − 1, j − 1), if xi = yj

max

{
OPT(i − 1, j),
OPT(i , j − 1)

otherwise

0, if j = 0

C T A C C
0 0 0 0 0 0

T 0 0 1 1 1 1
A 0 0 1 2 2 2
C 0 1 1 2 3 3
A 0 1 1 2 3 3
C 0 1 1 2 3 4
G 0 1 1 2 3 4

C T A C C

T A C A C G

Longest palindrome

Silvio Guimarães Dynamic programming 45 de 60

The longest palindrome problem is the task of finding the longest
subsequence which is a palindrome.

Longest palindrome

Silvio Guimarães Dynamic programming 45 de 60

The longest palindrome problem is the task of finding the longest
subsequence which is a palindrome.

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 and w is a
palindrome. A word w is a subsequence of x its length is maximal.

Longest palindrome

Silvio Guimarães Dynamic programming 45 de 60

The longest palindrome problem is the task of finding the longest
subsequence which is a palindrome.

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 and w is a
palindrome. A word w is a subsequence of x its length is maximal.

C T A T C G T C A T

Longest palindrome

Silvio Guimarães Dynamic programming 45 de 60

The longest palindrome problem is the task of finding the longest
subsequence which is a palindrome.

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 and w is a
palindrome. A word w is a subsequence of x its length is maximal.

C T A T C G T C A T

How to find the size of the longest palindrome?

Longest palindrome

Silvio Guimarães Dynamic programming 45 de 60

The longest palindrome problem is the task of finding the longest
subsequence which is a palindrome.

Formally, w0w1 . . .wi−1 is a subsequence of x0x1 . . . xm−1 and w is a
palindrome. A word w is a subsequence of x its length is maximal.

C T A T C G T C A T

How to find the size of the longest palindrome?

Longest increasing subsequence

Silvio Guimarães Dynamic programming 46 de 60

The longest increasing subsequence –LIS– problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

Longest increasing subsequence

Silvio Guimarães Dynamic programming 46 de 60

The longest increasing subsequence –LIS– problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

Longest increasing subsequence

Silvio Guimarães Dynamic programming 46 de 60

The longest increasing subsequence –LIS– problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

1 2 3 3 4 4 3 0 1L:

max{L(1), L(2), ..., L(n)}

Longest increasing subsequence

Silvio Guimarães Dynamic programming 46 de 60

The longest increasing subsequence –LIS– problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

1 2 3 3 4 4 3 0 1

max{L(1), L(2), ..., L(n)}

Longest increasing subsequence

Silvio Guimarães Dynamic programming 46 de 60

The longest increasing subsequence –LIS– problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

1 2 3 3 4 4 3 0 1

How to find the size of the LIS by using another strategy?

Longest increasing subsequence

Silvio Guimarães Dynamic programming 46 de 60

The longest increasing subsequence –LIS– problem is to find a
subsequence of a given sequence in which the subsequence’s
elements are in sorted order , lowest to highest, and in which the
subsequence is as long as possible.

2 3 9 5 9 8 4 0 1

1 2 3 3 4 4 3 0 1

How to find the size of the LIS by using another strategy?

Algorithm design and analysis

— Shortest Path Problem —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le ≥ 0 .

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

each node in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R+, and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães Dynamic programming 48 de 60

Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le ≥ 0 .

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

each node in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R+, and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães Dynamic programming 48 de 60

Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 49 de 60

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 49 de 60

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 49 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 49 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 49 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 49 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I Greedily add a node v to S that is closest to s.

I Can modify algorithm to compute the shortest paths
themselves: record the predecessor u that minimises d ′(v).

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

2

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

2

3

Example of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 50 de 60

a

b

c

d

e

f

1

1

4

3

1

2

3

1

2

0

∞

∞

∞

∞

∞

1

1

2

3

4

Proof of Correctness

Silvio Guimarães Dynamic programming 51 de 60

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?

Proof of Correctness

Silvio Guimarães Dynamic programming 51 de 60

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive step: we add the node v to S . Let u be the v ’s

predecessor on the path Pv . Could there be a shorter path P from s
to v?

s

x

u

y

v

p′

pu

The alternate s − v pathP
through x and y already too long
by the time it had left the set S

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths.

I Union of shortest paths output form a tree. Why?

Silvio Guimarães Dynamic programming 52 de 60

Implementing Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 53 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? .
I In each iteration, for each node v 6∈ S , compute

mine=(u,v),u∈S d(u) + le .

Implementing Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 53 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? .

I In each iteration, for each node v 6∈ S , compute
mine=(u,v),u∈S d(u) + le .

Implementing Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 53 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node v 6∈ S , compute
mine=(u,v),u∈S d(u) + le .

Implementing Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 53 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I How many iterations are there of the while loop? n − 1.
I In each iteration, for each node v 6∈ S , compute

mine=(u,v),u∈S d(u) + le .

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 54 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.

I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked?

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 54 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked?

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 54 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked?

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 54 de 60

Algorithm: Shortes path algorithm – Dijkstra)
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 Let S be the set of explored nodes;
2 foreach u ∈ S do store distance d [u] =∞;
3 Initially d [s] = 0 and S = s;

4 while S 6= V do
5 Select a node v 6∈ S with at least one edge from S for which

d ′(v) = mine=(u,v):u∈S d [u] +W (e) is as small as possible;
6 Add v to S and define d[v] = d’[v];
7 end

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue .
I Determine the next node v to add to S using ExtractMin.
I After adding v , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w), update w ’s key using ChangeKey.
I How many times are ExtractMin and ChangeKey invoked? n − 1

and m times, respectively.

Single Source Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le . Note that the weights may be negative.

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

all other nodes in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R , and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães Dynamic programming 55 de 60

Single Source Shortest Path Problem

I G = (V ,E) is a connected directed graph. Each edge e has a
length le . Note that the weights may be negative.

I V has n nodes and E has m edges.
I Length of a path P is the sum of lengths of the edges in P .
I Goal is to determine the shortest path from some start node s to

all other nodes in V .
I Aside: If G is undirected, convert to a directed graph by replacing

each edge in G by two directed edges.

Shortest Paths

INSTANCE A directed graph G (V ,E), a function l : E → R , and
a node s ∈ V

SOLUTION A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

Silvio Guimarães Dynamic programming 55 de 60

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 56 de 60

Dijkstra – Can fail if negative edge costs.

a

b

d

c

a

1

3

-6

2

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 56 de 60

Dijkstra – Can fail if negative edge costs.

a

b

d

c

a

1

3

-6

2

Re-weighting – Adding a constant to every edge weight can fail

b

d

c e

a

3

2

-3

3

2

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 56 de 60

Dijkstra – Can fail if negative edge costs.

a

b

d

c

a

1

3

-6

2

Re-weighting – Adding a constant to every edge weight can fail

b

d

c e

a

6

5

0

6

5

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 57 de 60

If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.

a

b

d

c

a

1

3

-6

-5

2

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 57 de 60

If some path from s to t contains a negative cost cycle ,

there does not exist a shortest s-t path; otherwise, there exists
one that is simple.

a

b

d

c

a

1

3

-6

-5

2

The Bellman-Ford algorithm is a way to find single source
shortest paths in a graph with negative edge weights (but no
negative cycles).

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 58 de 60

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 58 de 60

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 58 de 60

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

Bellman-Ford Algorithm

Silvio Guimarães Dynamic programming 58 de 60

OPT(i, v) = length of shortest v -t path P using at most i edges.

I Case 1 : P uses at most i − 1 edges.

OPT (i , v) = OPT (i − 1, v)

I Case 2 : P uses exactly i edges
I if (v ,w) is first edge, then OPT uses (v ,w), and then selects

best w -t path using at most i − 1 edges

OPT (i , v) =


0, if i = 0

min

{
OPT (i − 1, v)
min{OPT (i − 1,w) + cvw}

, otherwise

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 59 de 60

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 59 de 60

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)

I For finding the shortest paths, it is necessary to maintain a
successor for each table entry.

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 59 de 60

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

A Faster implementation of Dijkstra’s Algorithm

Silvio Guimarães Dynamic programming 59 de 60

Algorithm: Shortest path algorithm – Bellman-Ford
input : A graph G = (V ,E), a weight map W and a source node s.
output: The distances of the vertices from s

1 foreach v ∈ V do d [0, u] =∞;
2 Initially d [0, s] = 0;

3 for i = 1 to n − 1 do
4 foreach v ∈ V do
5 d [i , v] = d [i − 1, v]
6 end
7 foreach edge (v ,w) ∈ E do
8 d [i , v] = min{d [i , v], d [i − 1,w] + cvw}
9 end

10 end

I Computational cost: O(mn)
I For finding the shortest paths, it is necessary to maintain a

successor for each table entry.

How to detect negative cycles?

Shortest path – an example

Silvio Guimarães Dynamic programming 60 de 60

a

b

d

c

e

f

g h

e

9

5

8

5

20

9

11

13

1

7

6

4 12

15

3

4

Compute the shortest path from e to all other nodes!

	Dynamic programming: fundamentals
	Weighted interval scheduling
	Some exercises
	Maximum subarray problem
	Longest increasing subsequence
	Placing bilboards

	Segmented Least Squares
	Sequence alignment
	Longest commom subsequence
	Longest palindrome
	Longest increasing subsequence

	Shortest Path Problem
	Bellman-Ford

