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Maximum Flow and Minimum Cut

I Two rich algorithmic problems.
I Fundamental problems in combinatorial optimization.
I Beautiful mathematical duality between flows and cuts.
I Numerous non-trivial applications:

I Bipartite matching .

I Data mining.

I Project selection.

I Airline scheduling.

I Baseball elimination .

I Image segmentation .

I Network connectivity .

I Open-pit mining.

I Network reliability.

I Distributed computing.

I Egalitarian stable matching.

I Security of statistical data.

I Network intrusion detection.

I Multi-camera scene
reconstruction.

I Gene function prediction.
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I Use directed graphs to model transportation networks :
I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.
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I Use directed graphs to model transportation networks :
I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph
G = (V ,E )

I Each edge e ∈ E has a capacity
c(e) > 0.

I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal .
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Defining Flow

I In a flow network G = (V ,E ), an s-t flow is a function
f : E → R+ such that
(i) Capacity conditions For each e ∈ E , 0 ≤ f (e) ≤ c(e).

(ii) Conservation conditions For each internal node v ,∑
e into v

f (e) =
∑

e out of v

f (e)

I The value of a flow is ν(f ) =
∑

e out of s f (e).

I Useful notation:
f out(v) =

∑
e out of v f (e) f in(v) =

∑
e into v f (e)

For S ⊆ V ,
f out(S) =

∑
e out of S f (e) f in(S) =

∑
e into S f (e)
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Maximum-Flow Problem
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Maximum Flow

INSTANCE A flow network G

SOLUTION The flow with largest value in G

I Assumptions :

1. No edges enter s, no edges leave t.

2. There is at least one edge incident
on each node.

3. All edge capacities are integers .
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Developing the Algorithm
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I A flow network is a directed graph G = (V ,E )

I Let us take a greedy approach.

1. Start with zero flow along all edges.
2. Find an s-t path and push as much flow along it as possible.

3. Key idea : Push flow along edges with leftover capacity and

undo flow on edges already carrying flow.
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Residual Graph
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I Given a flow network G = (V ,E ) and a flow f on G , the residual
graph Gf of G with respect to f is a directed graph such that
(i) Nodes – Gf has the same nodes as G .

(ii) Forward edges – For each edge e = (u, v) ∈ E such that
f (e) < c(e), Gf contains the edge (u, v) with a residual capacity
c(e)− f (e).

(iii) Backward edges – For each edge e ∈ E such that f (e) > 0, Gf

contains the edge e′ = (v , u) with a residual capacity f (e).
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Augmenting Paths in a Residual Graph
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I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8
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Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).
I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤

f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P. Four cases to work

out.
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Ford-Fulkerson Algorithm
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Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;
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Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers.

Prove by induction .
I Claim: Flow value strictly increases when we apply

augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).
I Claim: Maximum value of any flow is C =

∑
e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.
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Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the
structure of the graph? For example, for every flow f ,
ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?
I Idea: An s-t cut is a partition of V into sets A and B such that

s ∈ A and t ∈ B .
I Capacity of the cut (A,B) is c(A,B) =

∑
e out of A c(e).

I Intuition: For every flow f , ν(f ) ≤ c(A,B).
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Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).
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Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved
ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of
any cut.

I Corollary: The maximum flow is, at most, the smallest capacity of
a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !
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Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm .

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).
I When the algorithm terminates, the residual graph has

no s-t path .

I Claim: If f is an s-t flow such that Gf has no s-t path, then there
is an s-t cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

I Claim applies to any flow f such that Gf has no s-t path, and not
just to the flow f̄ computed by the Ford-Fulkerson algorithm.
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Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.
I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e ′) = 0

.
I Claim: ν(f ) = c(A∗,B∗).
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Max-Flow Min-Cut Theorem
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I The flow f̄ computed by the Ford-Fulkerson algorithm is a
maximum flow .

I Given a flow of maximum value, we can compute a
minimum s-t cut in O(m) time.

I In every flow network, there is a flow f and a cut (A,B) such
that ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem : in every flow network, the
maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers ,
then there is a maximum flow f where every flow value f (e) is
an integer .
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— Scaling Max-Flow Algorithm —
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Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a low capacity .

I Idea: decrease number of iterations by picking s-t path with
bottleneck edge of largest capacity.

Computing this path can slow
down each iteration considerably.
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Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial : polynomial in the magnitudes of the numbers
in the input.

I Desire a strongly polynomial algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).

I Edmonds-Karp, Dinitz : choose augmenting path to be the
shortest path in Gf (use breadth-first search). Algorithm runs in
O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc. on
augmenting paths. Runs in O(n2m) or O(n3) time.
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Compute the maximum flow
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Bipartite graph matching
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Bipartite graph matching

INSTANCE Let G = (L∪R,E ) be an undirected graph. M ⊆ E

is a matching if each node appear in, at most, one
edge in M.

SOLUTION Find a max cardinality matching.
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Edge Disjoint Paths
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Disjoint path problem

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a max number of edge-disjoint s-t paths.
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Network Connectivity

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a min number of edges whose removal dis-
connects t from s
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