

Algorithm design and analysis

— Network Flow —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm design and analysis

- Maximum Flow and Minimum Cut -

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Maximum Flow and Minimum Cut

- Two rich algorithmic problems.
- ► Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
 - Bipartite matching
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Baseball elimination
 - Image segmentation
 - Network connectivity
 - Open-pit mining.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Gene function prediction.

Flow Networks

Use directed graphs to model transportation networks :

- edges carry traffic and have capacities.
- nodes act as switches.
- source nodes generate traffic, sink nodes absorb traffic.

Flow Networks

Use directed graphs to model transportation networks :

- edges carry traffic and have capacities.
- nodes act as switches.
- source nodes generate traffic, sink nodes absorb traffic.

- A flow network is a directed graph G = (V, E)
 - Each edge $e \in E$ has a capacity c(e) > 0.

Flow Networks

Use directed graphs to model transportation networks

- edges carry traffic and have capacities.
- nodes act as switches.
- source nodes generate traffic, sink nodes absorb traffic.

A flow network is a directed graph G = (V, E)

- Each edge $e \in E$ has a capacity c(e) > 0.
- There is a single source node $s \in V$.
- There is a single sink node $t \in V$.
- ▶ Nodes other than *s* and *t* are internal.

Defining Flow

- ▶ In a flow network G = (V, E), an s-t flow is a function $f : E \to \mathbb{R}^+$ such that
 - (i) Capacity conditions For each $e \in E$, $0 \le f(e) \le c(e)$.

(ii) Conservation conditions For each internal node v,

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

• The value of a flow is $\nu(f) = \sum_{e \text{ out of } s} f(e)$.

Defining Flow

- ▶ In a flow network G = (V, E), an s-t flow is a function $f : E \to \mathbb{R}^+$ such that
 - (i) Capacity conditions For each $e \in E$, $0 \le f(e) \le c(e)$.

(ii) Conservation conditions For each internal node v,

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

• The value of a flow is $\nu(f) = \sum_{e \text{ out of } s} f(e)$.

Useful notation:

 $\begin{aligned} f^{\text{out}}(v) &= \sum_{e \text{ out of } v} f(e) & f^{\text{in}}(v) &= \sum_{e \text{ into } v} f(e) \\ \text{For } S &\subseteq V, \\ f^{\text{out}}(S) &= \sum_{e \text{ out of } S} f(e) & f^{\text{in}}(S) &= \sum_{e \text{ into } S} f(e) \end{aligned}$

MAXIMUM FLOW

INSTANCE A flow network *G*

SOLUTION The flow with largest value in *G*

Assumptions :

1.	No edges	enter	<i>s</i> , no edges	leave	t.
----	----------	-------	---------------------	-------	----

MAXIMUM FLOW

INSTANCE A flow network *G*

SOLUTION The flow with largest value in *G*

Assumptions

- 1. No edges enter s, no edges leave t.
- 2. There is at least one edge incident on each node.

MAXIMUM FLOW

INSTANCE A flow network *G*

SOLUTION The flow with largest value in *G*

Assumptions

- 1. No edges enter s, no edges leave t.
- 2. There is at least one edge incident on each node.
- 3. All edge capacities are integers

Algorithm design and analysis — Ford-Fulkerson Algorithm —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

• A flow network is a directed graph G = (V, E)

Developing the Algorithm

- A flow network is a directed graph G = (V, E)
- Let us take a greedy approach.
 - 1. Start with zero flow along all edges.

Developing the Algorithm

- A flow network is a directed graph G = (V, E)
- Let us take a greedy approach.
 - 1. Start with zero flow along all edges.
 - 2. Find an *s*-*t* path and push as much flow along it as possible.

Developing the Algorithm

- Let us take a greedy approach.
 - 1. Start with zero flow along all edges.
 - 2. Find an *s*-*t* path and push as much flow along it as possible.
 - Key idea : Push flow along edges with leftover capacity and undo flow on edges already carrying flow.

▶ Given a flow network G = (V, E) and a flow f on G, the residual graph G_f of G with respect to f is a directed graph such that
(i) Nodes - G_f has the same nodes as G.

▶ Given a flow network G = (V, E) and a flow f on G, the residual graph G_f of G with respect to f is a directed graph such that
(i) Nodes - G_f has the same nodes as G.

• Given a flow network G = (V, E) and a flow f on G, the residual graph G_f of G with respect to f is a directed graph such that

(i) Nodes –
$$G_f$$
 has the same nodes as G .

- (ii) Forward edges For each edge $e = (u, v) \in E$ such that f(e) < c(e), G_f contains the edge (u, v) with a residual capacity c(e) f(e).
- (iii) Backward edges For each edge $e \in E$ such that f(e) > 0, G_f contains the edge e' = (v, u) with a residual capacity f(e).

• Given a flow network G = (V, E) and a flow f on G, the residual graph G_f of G with respect to f is a directed graph such that

(i) Nodes –
$$G_f$$
 has the same nodes as G .

- (ii) Forward edges For each edge $e = (u, v) \in E$ such that f(e) < c(e), G_f contains the edge (u, v) with a residual capacity c(e) f(e).
- (iii) Backward edges For each edge $e \in E$ such that f(e) > 0, G_f contains the edge e' = (v, u) with a residual capacity f(e).

- Let P be a simple s-t path in G_f .
- bottleneck(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:

Algo	ithm: Augmented path
ir	put : A graph $G = (V, E)$, a path P and a
	source s and a sink t nodes.
0	itput: The distances of the vertices from s
1 L	t b = bottleneck(P, f) ;
2 fo	reach $edge \ e = (u, v) \in P$ do
3	if e is a forward edge then
4	increase $f(e)$ in G by b
5	else if e is a backward edge then
6	decrease $f(e)$ in G by b;
7 e	nd
8	

- Let P be a simple s-t path in G_f .
- **bottleneck**(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:

Algorithm: Augmented path	
input : A graph $G = (V, E)$, a path P and a	
source s and a sink t nodes.	
output: The distances of the vertices from s	
1 Let $b = bottleneck(P, f)$;	
2 foreach $edge \ e = (u, v) \in P$ do	
3 if e is a forward edge then	
4 increase $f(e)$ in G by b	
5 else if <i>e</i> is a backward edge then	
6 decrease $f(e)$ in G by b;	
7 end	
8	

- Let P be a simple s-t path in G_f .
- bottleneck(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:

Algorithm: Augmented path	
input : A graph $G = (V, E)$, a path P and a source s and a sink t nodes.	
output: The distances of the vertices from s	
1 Let $b = bottleneck(P, f)$;	
2 foreach $edge \ e = (u, v) \in P$ do	
3 if e is a forward edge then	
4 increase $f(e)$ in G by b	
5 else if <i>e</i> is a backward edge then	
6 decrease $f(e)$ in G by b;	
7 end	
8	

- Let P be a simple s-t path in G_f .
- bottleneck(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:

- Let P be a simple s-t path in G_f .
- bottleneck(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:

Algo	ithm: Augmented path
ir	put : A graph $G = (V, E)$, a path P and a
	source s and a sink t nodes.
0	itput: The distances of the vertices from s
1 L	t b = bottleneck(P, f) ;
2 fo	reach $edge \ e = (u, v) \in P$ do
3	if e is a forward edge then
4	increase $f(e)$ in G by b
5	else if e is a backward edge then
6	decrease $f(e)$ in G by b;
7 e	nd
8	

- Let P be a simple s-t path in G_f .
- bottleneck(P, f) is the minimum residual capacity of any edge in P.
- The following operation $\operatorname{augment}(f, P)$ yields a new flow f' in G:

Algorithm: Augmented path	
input : A graph $G = (V, E)$, a path P and a	
source <i>s</i> and a sink <i>t</i> nodes.	
output: The distances of the vertices from s	
1 Let $b = bottleneck(P, f)$;	
2 foreach $edge \ e = (u, v) \in P$ do	
3 if e is a forward edge then	
4 increase $f(e)$ in G by b	
5 else if <i>e</i> is a backward edge then	
6 decrease $f(e)$ in G by b;	
7 end	
8	

- ► A simple *s*-*t* path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- Claim: f' is a flow. Verify capacity and conservation conditions.

- ► A simple *s*-*t* path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- ► Claim: *f*′ is a flow. Verify capacity and conservation conditions.
 - Only need to check edges and internal nodes in *P*.

- ► A simple *s*-*t* path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- Claim: f' is a flow. Verify capacity and conservation conditions.
 - Only need to check edges and internal nodes in *P*.
 - Capacity condition on $e = (u, v) \in G_f$: Note that

- A simple s-t path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- ► Claim: f' is a flow. Verify capacity and conservation conditions.
 - Only need to check edges and internal nodes in P.
 - Capacity condition on $e = (u, v) \in G_f$: Note that

• e is a forward edge: $0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f'(e) + f'(e) = f(e) + \text{bottleneck}(P, f) \le f'(e) = f(e) + f'(e) + f'(e) = f(e) + f'(e) = f'(e) + f'(e) + f'(e) = f'($ f(e) + (c(e) - f(e)) = c(e).

- A simple s-t path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- ► Claim: f' is a flow. Verify capacity and conservation conditions.
 - Only need to check edges and internal nodes in P.
 - Capacity condition on $e = (u, v) \in G_f$: Note that

- e is a forward edge: $0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f'(e) + f'(e) = f(e) + \text{bottleneck}(P, f) \le f'(e) = f(e) + f'(e) + f'(e) = f(e) + f'(e) = f'(e) + f'(e) + f'(e) = f'($ f(e) + (c(e) - f(e)) = c(e).
- *e* is a backward edge: c(e) > f(e) > f'(e) = f(e) - bottleneck(P, f) > f(e) - f(e) = 0.

- ► A simple *s*-*t* path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- Claim: f' is a flow. Verify capacity and conservation conditions.
 - Only need to check edges and internal nodes in *P*.
 - Capacity condition on $e = (u, v) \in G_f$: Note that

- ▶ e is a forward edge: $0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c(e) f(e)) = c(e).$
- e is a backward edge: $c(e) \ge f(e) \ge f'(e) = f(e) - bottleneck(P, f) \ge f(e) - f(e) = 0.$
- Conservation condition on internal node $v \in P$.

- ► A simple *s*-*t* path in the residual graph is an augmenting path.
- Let f' be the flow returned by $\operatorname{augment}(f, P)$.
- Claim: f' is a flow. Verify capacity and conservation conditions.
 - Only need to check edges and internal nodes in *P*.
 - Capacity condition on $e = (u, v) \in G_f$: Note that

- ▶ e is a forward edge: $0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c(e) f(e)) = c(e).$
- e is a backward edge: $c(e) \ge f(e) \ge f'(e) = f(e) - \text{bottleneck}(P, f) \ge f(e) - f(e) = 0.$
- ► Conservation condition on internal node v ∈ P. Four cases to work out.

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Silvio Guimarães

Silvio Guimarães

 Claim: at each stage, flow values and residual capacities are integers. Claim: at each stage, flow values and residual capacities are integers. Prove by induction.

- Claim: at each stage, flow values and residual capacities are integers. Prove by induction.
- ► Claim: Flow value strictly increases when we apply augment(f, P).

- Claim: at each stage, flow values and residual capacities are integers. Prove by induction.
- ► Claim: Flow value strictly increases when we apply augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

- Claim: at each stage, flow values and residual capacities are integers. Prove by induction.
- ► Claim: Flow value strictly increases when we apply augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).
- Claim: Maximum value of any flow is $C = \sum_{e \text{ out of } s} c(e)$.

- Claim: at each stage, flow values and residual capacities are integers. Prove by induction.
- ► Claim: Flow value strictly increases when we apply augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).
- Claim: Maximum value of any flow is $C = \sum_{e \text{ out of } s} c(e)$.
- ► Claim: Algorithm terminates in at most *C* iterations.

- Claim: at each stage, flow values and residual capacities are integers. Prove by induction.
- ► Claim: Flow value strictly increases when we apply augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).
- Claim: Maximum value of any flow is $C = \sum_{e \text{ out of } s} c(e)$.
- ► Claim: Algorithm terminates in at most *C* iterations.
- Claim: Algorithm runs in O(mC) time.

How large can the flow be?

- How large can the flow be?
- Can we characterise the magnitude of the flow in terms of the structure of the graph? For example, for every flow *f*, *ν*(*f*) ≤ *C* = ∑_{eout of s} *c*(*e*).
- Is there a better bound?

- How large can the flow be?
- Can we characterise the magnitude of the flow in terms of the structure of the graph? For example, for every flow *f*, ν(*f*) ≤ *C* = ∑_{eout of s} *c*(*e*).
- Is there a better bound?
- ▶ Idea: An <u>s-t</u> cut is a partition of V into sets A and B such that $s \in A$ and $t \in B$.
 - Capacity of the cut (A, B) is $c(A, B) = \sum_{e \text{ out of } A} c(e)$.
 - Intuition: For every flow f, $\nu(f) \leq c(A, B)$.

• Let f be any s-t flow and (A, B) any s-t cut.

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.
 - $\nu(f) = \sum_{v \in A} (f^{\operatorname{out}}(v) f^{\operatorname{in}}(v)).$

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - ▶ $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.
 - $\nu(f) = \sum_{v \in A} (f^{\operatorname{out}}(v) f^{\operatorname{in}}(v)).$
 - An edge e that has both ends in A or both ends out of A does not contribute.
 - An edge e that has its tail in A contributes f(e).
 - An edge e that has its head in A contributes -f(e).

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - ▶ $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.
 - $\nu(f) = \sum_{v \in A} (f^{\operatorname{out}}(v) f^{\operatorname{in}}(v)).$
 - An edge e that has both ends in A or both ends out of A does not contribute.
 - ► An edge *e* that has its tail in *A* contributes *f*(*e*).
 - An edge e that has its head in A contributes -f(e).

► $\sum_{v \in A} (f^{\text{out}}(v) - f^{\text{in}}(v)) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = f^{\text{out}}(A) - f^{\text{in}}(A).$

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - ▶ $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.

•
$$\nu(f) = \sum_{v \in A} (f^{\operatorname{out}}(v) - f^{\operatorname{in}}(v)).$$

- An edge e that has both ends in A or both ends out of A does not contribute.
- An edge e that has its tail in A contributes f(e).
- An edge e that has its head in A contributes -f(e).
- ► $\sum_{v \in A} (f^{\text{out}}(v) f^{\text{in}}(v)) = \sum_{e \text{ out of } A} f(e) \sum_{e \text{ into } A} f(e) = f^{\text{out}}(A) f^{\text{in}}(A).$
- Corollary: $\nu(f) = f^{\text{in}}(B) f^{\text{out}}(B)$.

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - ▶ $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.
 - $\nu(f) = \sum_{v \in A} (f^{\operatorname{out}}(v) f^{\operatorname{in}}(v)).$
 - An edge e that has both ends in A or both ends out of A does not contribute.
 - ► An edge *e* that has its tail in *A* contributes *f*(*e*).
 - An edge e that has its head in A contributes -f(e).
 - ► $\sum_{v \in A} (f^{\text{out}}(v) f^{\text{in}}(v)) = \sum_{e \text{ out of } A} f(e) \sum_{e \text{ into } A} f(e) = f^{\text{out}}(A) f^{\text{in}}(A).$
- Corollary: $\nu(f) = f^{\text{in}}(B) f^{\text{out}}(B)$.
- \blacktriangleright $\nu(f) \leq c(A, B)$.

- Let f be any s-t flow and (A, B) any s-t cut.
- Claim: $\nu(f) = f^{\text{out}}(A) f^{\text{in}}(A)$.
 - ▶ $\nu(f) = f^{\text{out}}(s)$ and $f^{\text{in}}(s) = 0 \Rightarrow \nu(f) = f^{\text{out}}(s) f^{\text{in}}(s)$.
 - For every other node $v \in A$, $f^{out}(v) f^{in}(v) = 0$.

•
$$\nu(f) = \sum_{v \in A} (f^{\operatorname{out}}(v) - f^{\operatorname{in}}(v)).$$

- An edge e that has both ends in A or both ends out of A does not contribute.
- An edge e that has its tail in A contributes f(e).
- An edge e that has its head in A contributes -f(e).
- ► $\sum_{v \in A} (f^{\text{out}}(v) f^{\text{in}}(v)) = \sum_{e \text{ out of } A} f(e) \sum_{e \text{ into } A} f(e) = f^{\text{out}}(A) f^{\text{in}}(A).$
- Corollary: $\nu(f) = f^{\text{in}}(B) f^{\text{out}}(B)$.
- $\nu(f) \leq c(A, B) .$ $\nu(f) = f^{\text{out}}(A) - f^{\text{in}}(A) \leq f^{\text{out}}(A) = \sum_{e \text{ out of } A} f(e)$

$$\leq \sum_{e \text{ out of } A} c(e) = c(A, B).$$

• Let f be any s-t flow and (A, B) any s-t cut. We proved $\nu(f) \leq c(A, B)$.

- ► Let f be any s-t flow and (A, B) any s-t cut. We proved $\nu(f) \leq c(A, B)$.
- ► Very strong statement: The value of every flow is ≤ capacity of any cut.

- ► Let f be any s-t flow and (A, B) any s-t cut. We proved $\nu(f) \leq c(A, B)$.
- ► Very strong statement: The value of every flow is ≤ capacity of any cut.
- Corollary: The maximum flow is, at most, the smallest capacity of a cut.

- ► Let f be any s-t flow and (A, B) any s-t cut. We proved $\nu(f) \leq c(A, B)$.
- ► Very strong statement: The value of every flow is ≤ capacity of any cut.
- Corollary: The maximum flow is, at most, the smallest capacity of a cut.
- Question: Is the reverse true? Is the smallest capacity of a cut at most the maximum flow?

- ► Let f be any s-t flow and (A, B) any s-t cut. We proved $\nu(f) \leq c(A, B)$.
- ► Very strong statement: The value of every flow is ≤ capacity of any cut.
- Corollary: The maximum flow is, at most, the smallest capacity of a cut.
- Question: Is the reverse true? Is the smallest capacity of a cut at most the maximum flow?
- Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !

- Let \overline{f} denote the flow computed by the Ford-Fulkerson algorithm.
- Enough to show $\exists s-t \text{ cut } (A^*, B^*) \text{ such that } \nu(\overline{f}) = c(A^*, B^*).$
- When the algorithm terminates, the residual graph has no s-t path.

- Let \overline{f} denote the flow computed by the Ford-Fulkerson algorithm .
- Enough to show $\exists s-t \text{ cut } (A^*, B^*)$ such that $\nu(\overline{f}) = c(A^*, B^*)$.
- When the algorithm terminates, the residual graph has no s-t path.
- ► Claim: If f is an s-t flow such that G_f has no s-t path, then there is an s-t cut (A*, B*) such that v(f) = c(A*, B*).
 - ► Claim applies to any flow f such that G_f has no s-t path, and not just to the flow f̄ computed by the Ford-Fulkerson algorithm.

- ► Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists$ s-t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from *s* in G_f , $B^* = V A^*$.

- ► Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists s$ -t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from s in G_f , $B^* = V A^*$.
- Claim: (A^*, B^*) is an *s*-*t* cut.

- Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists s$ -t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from s in G_f , $B^* = V A^*$.
- ► Claim: (A*, B*) is an s-t cut.
- ▶ Claim: If e = (u, v) such that $u \in A^*$, $v \in B^*$, then
- ► Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists s$ -t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from s in G_f , $B^* = V A^*$.
- Claim: (A^*, B^*) is an *s*-*t* cut.
- ▶ Claim: If e = (u, v) such that $u \in A^*$, $v \in B^*$, then f(e) = c(e).

- Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists s$ -t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from s in G_f , $B^* = V A^*$.
- Claim: (A^*, B^*) is an *s*-*t* cut.
- ▶ Claim: If e = (u, v) such that $u \in A^*$, $v \in B^*$, then f(e) = c(e).
- ▶ Claim: If e' = (u', v') such that $u' \in B^*$, $v' \in A^*$, then

- ► Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists s$ -t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from s in G_f , $B^* = V A^*$.
- Claim: (A^*, B^*) is an *s*-*t* cut.
- ▶ Claim: If e = (u, v) such that $u \in A^*$, $v \in B^*$, then f(e) = c(e).
- ▶ Claim: If e' = (u', v') such that $u' \in B^*$, $v' \in A^*$, then f(e') = 0.

- ► Claim: f is an s-t flow and G_f has no s-t path $\Rightarrow \exists s$ -t cut $(A^*, B^*), \nu(f) = c(A^*, B^*).$
- A^* = set of nodes reachable from *s* in G_f , $B^* = V A^*$.
- Claim: (A^*, B^*) is an *s*-*t* cut.
- ▶ Claim: If e = (u, v) such that $u \in A^*$, $v \in B^*$, then f(e) = c(e).
- ▶ Claim: If e' = (u', v') such that $u' \in B^*$, $v' \in A^*$, then f(e') = 0.
- Claim: $\nu(f) = c(A^*, B^*)$.

Max-Flow Min-Cut Theorem

- The flow \overline{f} computed by the Ford-Fulkerson algorithm is a maximum flow.
- Given a flow of maximum value, we can compute a minimum s-t cut in O(m) time.

Max-Flow Min-Cut Theorem

- The flow \overline{f} computed by the Ford-Fulkerson algorithm is a maximum flow.
- ► Given a flow of maximum value, we can compute a minimum s-t cut in O(m) time.
- In every flow network, there is a flow f and a cut (A, B) such that v(f) = c(A, B).
- Max-Flow Min-Cut Theorem : in every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

Max-Flow Min-Cut Theorem

- The flow \overline{f} computed by the Ford-Fulkerson algorithm is a maximum flow.
- ► Given a flow of maximum value, we can compute a minimum s-t cut in O(m) time.
- In every flow network, there is a flow f and a cut (A, B) such that v(f) = c(A, B).
- Max-Flow Min-Cut Theorem : in every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.
- ► Corollary: If all capacities in a flow network are integers, then there is a maximum flow f where every flow value f(e) is an integer.

Algorithm design and analysis — Scaling Max-Flow Algorithm —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

s

Silvio Guimarães

's

Silvio Guimarães

s

- Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the augmenting path has a low capacity.
- Idea: decrease number of iterations by picking s-t path with bottleneck edge of largest capacity.

- Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the augmenting path has a low capacity.
- Idea: decrease number of iterations by picking s-t path with bottleneck edge of largest capacity. Computing this path can slow down each iteration considerably.

Other Maximum Flow Algorithms

- Running time of the Ford-Fulkerson algorithm is O(mC), which is pseudo-polynomial : polynomial in the magnitudes of the numbers in the input.
- Desire a strongly polynomial algorithm: running time is depends only on the size of the graph and is *independent* of the numerical values of the capacities (as long as numerical operations take O(1) time).

Other Maximum Flow Algorithms

- Running time of the Ford-Fulkerson algorithm is O(mC), which is pseudo-polynomial : polynomial in the magnitudes of the numbers in the input.
- Desire a strongly polynomial algorithm: running time is depends only on the size of the graph and is *independent* of the numerical values of the capacities (as long as numerical operations take O(1) time).
- Edmonds-Karp, Dinitz : choose augmenting path to be the shortest path in G_f (use breadth-first search). Algorithm runs in O(mn) iterations.
- ► Improved algorithms take time O(mn log n), O(n³), etc. on augmenting paths. Runs in O(n²m) or O(n³) time.

Algorithm design and analysis

— Exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Compute the maximum flow

Compute the maximum flow

BIPARTITE GRAPH MATCHING

INSTANCE Let $G = (L \cup R, E)$ be an undirected graph. $M \subseteq E$ is a matching if each node appear in, at most, one edge in M.

SOLUTION Find a max cardinality matching.

BIPARTITE GRAPH MATCHING

INSTANCE Let $G = (L \cup R, E)$ be an undirected graph. $M \subseteq E$ is a matching if each node appear in, at most, one edge in M.

SOLUTION Find a max cardinality matching.

BIPARTITE GRAPH MATCHING

INSTANCE Let $G = (L \cup R, E)$ be an undirected graph. $M \subseteq E$ is a matching if each node appear in, at most, one edge in M.

SOLUTION Find a max cardinality matching.

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two vertices *s* and *t*

SOLUTION Find a max number of edge-disjoint *s*-*t* paths.

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two vertices *s* and *t*

SOLUTION Find a **max number** of edge-disjoint *s*-*t* paths.

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two vertices *s* and *t*

SOLUTION Find a max number of edge-disjoint *s*-*t* paths.

Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two vertices *s* and *t*

SOLUTION Find a min number of edges whose removal disconnects *t* from *s*

Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two vertices *s* and *t*

SOLUTION Find a min number of edges whose removal disconnects *t* from *s*

Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two vertices *s* and *t*

SOLUTION Find a min number of edges whose removal disconnects *t* from *s*

