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Maximum Flow and Minimum Cut

v

Two rich algorithmic problems.

v

Fundamental problems in combinatorial optimization.

v

Beautiful mathematical duality between flows and cuts.

v

Numerous non-trivial applications:

Bipartite matching |

v
v

Network reliability.

» Data mining.
ata mining » Distributed computing.

v

Project selection. o .
) » Egalitarian stable matching.

v

Airline scheduling. . -
& » Security of statistical data.

Baseball elimination } . . .
» Network intrusion detection.
4 Image segmentation § » Multi-camera scene
- reconstruction.
Network connectivity |

o » Gene function prediction.
» Open-pit mining.

v

v
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Flow Networks

» Use directed graphs to model RiElSololge aleIiMiISa e Y

» edges carry traffic and have capacities.
» nodes act as switches.
» source nodes generate traffic, sink nodes absorb traffic.
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Flow Networks

» Use directed graphs to model RiElSololge aleIiMiISa e Y

» edges carry traffic and have capacities.
» nodes act as switches.
» source nodes generate traffic, sink nodes absorb traffic.

» A is a directed graph

G=(V,E)
» Each edge e € E has a capacity

/
20 10

CS< o >G> c(e) > 0.
10\‘61/)/20
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Flow Networks

» Use directed graphs to model RiElSololge aleIiMiISa e Y

» edges carry traffic and have capacities.
» nodes act as switches.
» source nodes generate traffic, sink nodes absorb traffic.

» A is a directed graph
/ G=(V,E)
20 10 » Each edge e € E has a capacity

- \‘e c(e) > 0.
Vi » There is a single node s € V.
20 » There is a single node t € V.

\0/ » Nodes other than s and t are .
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Defining Flow

» In a flow network G = (V, E), an is a function
f: E — RT such that

(i) For each e € E, 0 < f(e) < c(e).
(ii) For each internal node v,

Y fley= > fle)

e into v e out of v

» The of a flow is (f) = >, it of s F(€)-
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Defining Flow

» In a flow network G = (V, E), an is a function
f: E — RT such that

(i) For each e € E, 0 < f(e) < c(e).
(ii) For each internal node v,

Y fley= > fle)

e into v e out of v

» The of a flow is (f) = >, it of s F(€)-

» Useful notation:

fOUt(V) - Ze out of v f(e) fin(v) = Ze into v f(e)
For S C V, .
fOUt(S) = Ze out of S f(e) fm(s) = Ze into S f(e)
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Maximum-Flow Problem

MaxiMmuM FrLow
INSTANCE A flow network G

SOLUTION The flow with largest value in G

1. No edges s, no edges JEEVS ¢.

T

10 20

hog
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Maximum-Flow Problem

MaxiMmuM FrLow
INSTANCE A flow network G

SOLUTION The flow with largest value in G

1. No edges s, no edges JEEVS ¢.

:
20 10
Cs( 30 >@) 2. There is one edge incident

on each node.
10 20

hog
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Maximum-Flow Problem

MaxiMmuM FrLow

INSTANCE A flow network G

SOLUTION The flow with largest value in G

/

20/20 10/10

o

10/10 l 20/20

kot

Silvio Guimaraes

1.
2.

3.

No edges s, no edges JEEVS ¢.

There is one edge incident

on each node.

All edge capacities are .

Network Flow 6 de 29
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Developing the Algorithm

» A is a directed graph G = (V. E)

20 10

o« i P
k1
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Developing the Algorithm

» A is a directed graph G = (V. E)

» Let us take a greedy approach.
1. Start with along all edges.
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Developing the Algorithm

» A is a directed graph G = (V. E)

» Let us take a greedy approach.
1. Start with along all edges.

2. Find an s-t path and push ESuDIE R I WIS possible.
2

Tr <>
hof hog
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Developing the Algorithm

» A is a directed graph G = (V. E)

» Let us take a greedy approach.
1. Start with along all edges.

2. Find an s-t path and push ESuDIE R I WIS possible.
3. : Push flow along edges with capacity and

on edges already carrying flow.
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Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.

20 10

o« i e
k1
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Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.
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Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.
(ii) edges — For each edge e = (u,v) € E such that

f(e) < c(e), Gr contains the edge (u, v) with a
c(e) — f(e).

(iii) edges — For each edge e € E such that f(e) > 0, Gf
contains the edge e’ = (v, u) with a residual capacity f(e).

@— /e —®

0/20 0/10

@:( 0/30

0/10 l 0/20

No O =0
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Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.
(ii) edges — For each edge e = (u,v) € E such that

f(e) < c(e), Gr contains the edge (u, v) with a
c(e) — f(e).

(iii) edges — For each edge e € E such that f(e) > 0, Gf
contains the edge e’ = (v, u) with a residual capacity f(e).

@— f/c —>®
0/20 0/10 200 / \010

\
] €
N @O, =0 3
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Augmenting Paths in a Residual Graph

> Let P be a QAL in Gr.

> QRN EEMAN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s
0/20 0/10 (RSN bottleneck(P, f) B
foreach edge e = (u,v) € P do
0/30 if e is a forward edge then
0/10\4/{0/20

‘ increase f(e) in G by b
Silvio Guimaraes Network Flow 10 de 29

else if e is a backward edge then
‘ decrease f(e) in G by b;
end
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Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a

source s and a sink t nodes.
s output: The distances of the vertices from s
0 0 \ Let b = [N CZNDY
0 30
s
20
0

17 foreach edge e = (u,v) € P do
if e is a forward edge then
‘ increase f(e) in G by b
else if e is a backward edge then
‘ decrease f(e) in G by b;
end

10

0\/

0 N oA W N =
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Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a
source s and a sink t nodes.
x, output: The distances of the vertices from s

2 foreach edge e = (u,v) € P do
0 30 3 if e is a forward edge then
10 20’ 4 ‘ increase f(e) in G by b
0 0 5 else if e is a backward edge then
6 ‘ decrease f(e) in G by b;
7 end
8
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Augmenting Paths in a Residual Graph

> Let P be a QAL in Gr.

> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s
20/20 0/10 (RS bottleneck(P, f) B
foreach edge e = (u,v) € P do
20/30 if e is a forward edge then
0/10\4/{20/20

‘ increase f(e) in G by b
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else if e is a backward edge then
‘ decrease f(e) in G by b;
end
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Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRIS EEMAN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a
source s and a sink t nodes.
output: The distances of the vertices from s

Let b = [JSUEHSNENDY ;

foreach edge e = (u,v) € P do
if e is a forward edge then
‘ increase f(e) in G by b
else if e is a backward edge then
‘ decrease f(e) in G by b;
end

20 '
20 10

10 ‘\

|

S,

0 N oA W N =
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Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a
source s and a sink t nodes.
output: The distances of the vertices from s

%2 10° et b = RG]
2 foreach edge e = (u,v) € P do
10 20 3 if e is a forward edge then
0 0 4 ‘ increase f(e) in G by b
10 20 5 else if e is a backward edge then
6 ‘ decrease f(e) in G by b;
7 end
8
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Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.
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» Let 1’ be the flow returned by augment(f, P).
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» Only need to check edges and internal nodes in P.
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Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).
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Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <

f(e) + (c(e) — f(e)) = c(e).
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Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <

fe) + (c(e) — f(e)) = c(e).
> e is a backward edge:
c(e) > f(e) > f'(e) = f(e) — bottleneck(P, f) > f(e) — f(e) = 0.
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Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).
> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <
f(e) + (c(e) — f(e)) = c(e).
> e is a backward edge:
c(e) > f(e) > f'(e) = f(e) — bottleneck(P, f) > f(e) — f(e) = 0.

» Conservation condition on internal node v € P.
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Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <
fe) + (c(e) — f(e)) = c(e).
> e is a backward edge:
c(e) > f(e) > f'(e) = f(e) — bottleneck(P, f) > f(e) — f(e) = 0.
» Conservation condition on internal node v € P. Four cases to work
out.
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve € E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 0/20 0/10

4pre

20 0/10 l 0/20

Silvio Guimaraes Network Flow 12 de 29



Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

Z
20 10 0/20 0/10 200 [\010
e« » ® a5y
30 G< 0/30 >(D 0 30 })
10 l 20 0/10 l 0/20 \010 /200
koS e &
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Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 " = augment(f, P);
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6
7
8
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f" = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 20/20 0/10 0/[ \ 10
20 N
@< 30 >@ @( 20/30 :}@ (i/ 20 10 ?}
10 l 20 0/10 l 20/20 N 10 / o/
0 20
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 " = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

0/ \ 10 0 10

20 10 20/20 0/10 20[ 0 \ 20’ . \
@< 30 >(D @< 20/30 >@ (i/ 20 10 ? 20 10 })

10\‘619/20 0/10\619/20/20 \010\ /A/Om 010 / 020
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f" = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;
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Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 20/20 10/10 . " \
@< 30 >@ G< 10/30 >(D Csﬁ 10 20 /?)
10 l 20 10/10 l 20/20 \ 0 / 0

10 \ 20
koS ko -
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Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers.
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» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P).
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Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd
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augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).
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Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

» Claim: Maximum value of any flow is C = )"_ . o< c(e).

» Claim: Algorithm terminates in at most C iterations.
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Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

» Claim: Maximum value of any flow is C = )"_ . o< c(e).

» Claim: Algorithm terminates in at most C iterations.

» Claim: Algorithm runs in QOIEuI@Y time.
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Correctness of the Ford-Fulkerson Algorithm

» How large can the flow be?
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Correctness of the Ford-Fulkerson Algorithm

» How large can the flow be?

» Can we characterise the magnitude of the flow in terms of the
structure of the graph? For example, for every flow f,

V(f) < Cc= Zeout of s C(e)'
> Is there a better bound?
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Correctness of the Ford-Fulkerson Algorithm

» How large can the flow be?

» Can we characterise the magnitude of the flow in terms of the
structure of the graph? For example, for every flow f,
V(f) <C= Zeout of s C(e)'

» Is there a better bound?

> Idea: An is a partition of V into sets A and B such that
secAand teB.

> of the cut (A, B) is c(A,B) =3 . out of 4 €(€)-

» Intuition: For every flow f, v(f) < c(A, B).
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Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
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Fun Facts about Cuts

> Let f be any s-t flow and (A, B) any s-t cut.
» Claim: v(f) = FoUt(A) — F"(A).
> U(f) = F%(s) and F"(s) = 0 = v(F) = FoUE(s) — Fin(s).
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Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.

» Claim: v(f) = foUt(A) — fin(A).
> u(F) = FoU(s) and F(s) = 0 = v(F) = FoU(s) — Fn(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
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Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.

» Claim: v(f) = foUt(A) — fin(A).
> u(F) = FoU(s) and F(s) = 0 = v(F) = FoU(s) — Fn(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
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Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fOt(A) — Fn(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
> () = ea (F(v) = £7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.
> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).
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Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fUt(A) — fin(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
> v(f) = Xyea (FU(v) = F7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.

> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).

> Dvea (fOUt(V) = (V) = Xeourof af(€) = Xeino afle) =
fout(A) — f"(A).
» Corollary: v(f) = f"(B) — fU(B).
> 7/(f) < C(A, B) .
v(f) = () = F(A) < PP (A) = Y f(e)
e out of A
< Z c(e) = c(A, B).
e out of A
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Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).
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Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).
» Very strong statement: The value of flow is < capacity of

ENA cut.
» Corollary: The maximum flow is, at most, the [HUEIESRETEIINA of
a cut.

» Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

» Answer: Yes, and the Ford-Fulkerson algorithm computes this feiid!
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Flows and Cuts

> Let 7 denote the flow computed by the RS NI ttAnE.

» Enough to show 3 s-t cut (A*, B*) such that v(f) = c(A*, B*).

» When the algorithm terminates, the EESIsDEIRSETIN has
no s-t path §

Silvio Guimaraes Network Flow 17 de 29



Flows and Cuts

» Let 7 denote the flow computed by the .
» Enough to show 3 s-t cut (A*, B*) such that v(f) = c(A*, B*).
» When the algorithm terminates, the has

no -t pov ]

» Claim: If f is an s-t flow such that Gf has no s-t path, then there
is an s-t cut (A*, B*) such that v(f) = c(A*, B¥).
» Claim applies to any flow f such that G¢ has no s-t path, and not
just to the flow f computed by the Ford-Fulkerson algorithm.
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Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.
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(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.

v

Claim: (A*, B*) is an s-t cut.
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Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut

(A*, B*), v(f) = c(A*, BY).
» A* = set of nodes reachable from s in Gf, B* = V — A*.
Claim: (A*, B*) is an s-t cut.
Claim: If e = (u, v) such that u € A*, v € B*, then f(e) = c(e).
Claim: If ¢ = (J, V) such that v’ € B*, v/ € A*, then f(e’) =0
Claim: v(f) = c(A*, B¥).

v

v

v

v
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Max-Flow Min-Cut Theorem

» The flow f computed by the Ford-Fulkerson algorithm is a
| maximum flow |

» Given a flow of maximum value, we can compute a

in O(m) time.
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Max-Flow Min-Cut Theorem

» The flow f computed by the Ford-Fulkerson algorithm is a
| maximum flow |

» Given a flow of maximum value, we can compute a
PRty in O(m) time.

» In every flow network, there is a flow f and a cut (A, B) such
that v(f) = c(A, B).

> WESRERYINROTRMYXIIE]: in every flow network, the

maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

» Corollary: If all capacities in a flow network are ,
then there is a maximum flow f where every flow value f(e) is
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Improving Ford-Fulkerson Algorithm

» Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a .

> ldea: number of iterations by picking s-t path with
bottleneck edge of largest capacity.
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Improving Ford-Fulkerson Algorithm

» Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a .

> ldea: number of iterations by picking s-t path with
bottleneck edge of largest capacity. Computing this path can slow
down each iteration considerably.
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Other Maximum Flow Algorithms

» Running time of the Ford-Fulkerson algorithm is O(mC), which is

O Ls [T WAIIWIEW: polynomial in the magnitudes of the numbers

in the input.

» Desire a [SignlASWGIWEIR algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).
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Other Maximum Flow Algorithms

» Running time of the Ford-Fulkerson algorithm is O(mC), which is
: polynomial in the magnitudes of the numbers
in the input.

» Desire a algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).

> : choose augmenting path to be the
shortest path in G (use breadth-first search). Algorithm runs in
O(mn) iterations.

» Improved algorithms take time O(mnlogn), O(n3), etc. on
augmenting paths. Runs in O(n?m) or O(n?) time.
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Compute the maximum flow
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Compute the maximum flow
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Bipartite graph matching

BIPARTITE GRAPH MATCHING

INSTANCE Let G = (LUR, E) be an undirected graph. M C E
is a fuEleulrd if each node appear in, at most, one

edge in M.

SOLUTION Find a matching.
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Edge Disjoint Paths

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edge-disjoint s-t paths.
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Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edges whose removal dis-

connects t from s
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