N

INFORMATICA PUC Minas SCIENCE

Algorithm design and analysis

— Network Flow —
Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas

.
®
.
.
.
.

Feb 2023

N

INFORMATICA PUC Minas SCIENCE

Algorithm design and analysis

— Maximum Flow and Minimum Cut —
Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas

.
®
.
.
.
.

Feb 2023

Maximum Flow and Minimum Cut

v

Two rich algorithmic problems.

v

Fundamental problems in combinatorial optimization.

v

Beautiful mathematical duality between flows and cuts.

v

Numerous non-trivial applications:

Bipartite matching |

v
v

Network reliability.

» Data mining.
ata mining » Distributed computing.

v

Project selection. o .
) » Egalitarian stable matching.

v

Airline scheduling. . -
& » Security of statistical data.

Baseball elimination } . . .
» Network intrusion detection.
4 Image segmentation § » Multi-camera scene
- reconstruction.
Network connectivity |

o » Gene function prediction.
» Open-pit mining.

v

v

Silvio Guimaraes Network Flow 3 de 29

Flow Networks

» Use directed graphs to model RiElSololge aleIiMiISa e Y

» edges carry traffic and have capacities.
» nodes act as switches.
» source nodes generate traffic, sink nodes absorb traffic.

Silvio Guimaraes Network Flow 4 de 29

Flow Networks

» Use directed graphs to model RiElSololge aleIiMiISa e Y

» edges carry traffic and have capacities.
» nodes act as switches.
» source nodes generate traffic, sink nodes absorb traffic.

» A is a directed graph

G=(V,E)
» Each edge e € E has a capacity

/
20 10

CS< o >G> c(e) > 0.
10\‘61/)/20

Silvio Guimaraes Network Flow 4 de 29

Flow Networks

» Use directed graphs to model RiElSololge aleIiMiISa e Y

» edges carry traffic and have capacities.
» nodes act as switches.
» source nodes generate traffic, sink nodes absorb traffic.

» A is a directed graph
/ G=(V,E)
20 10 » Each edge e € E has a capacity

- \‘e c(e) > 0.
Vi » There is a single node s € V.
20 » There is a single node t € V.

\0/ » Nodes other than s and t are .

Silvio Guimaraes Network Flow 4 de 29

Defining Flow

» In a flow network G = (V, E), an is a function
f: E — RT such that

(i) For each e € E, 0 < f(e) < c(e).
(ii) For each internal node v,

Y fley= > fle)

e into v e out of v

» The of a flow is (f) = >, it of s F(€)-

Silvio Guimaraes Network Flow 5 de 29

Defining Flow

» In a flow network G = (V, E), an is a function
f: E — RT such that

(i) For each e € E, 0 < f(e) < c(e).
(ii) For each internal node v,

Y fley= > fle)

e into v e out of v

» The of a flow is (f) = >, it of s F(€)-

» Useful notation:

fOUt(V) - Ze out of v f(e) fin(v) = Ze into v f(e)
For S C V, .
fOUt(S) = Ze out of S f(e) fm(s) = Ze into S f(e)

Silvio Guimaraes Network Flow 5 de 29

Maximum-Flow Problem

MaxiMmuM FrLow
INSTANCE A flow network G

SOLUTION The flow with largest value in G

1. No edges s, no edges JEEVS ¢.

T

10 20

hog

Silvio Guimaraes Network Flow 6 de 29

Maximum-Flow Problem

MaxiMmuM FrLow
INSTANCE A flow network G

SOLUTION The flow with largest value in G

1. No edges s, no edges JEEVS ¢.

:
20 10
Cs(30 >@) 2. There is one edge incident

on each node.
10 20

hog

Silvio Guimaraes Network Flow 6 de 29

Maximum-Flow Problem

MaxiMmuM FrLow

INSTANCE A flow network G

SOLUTION The flow with largest value in G

/

20/20 10/10

o

10/10 l 20/20

kot

Silvio Guimaraes

1.
2.

3.

No edges s, no edges JEEVS ¢.

There is one edge incident

on each node.

All edge capacities are .

Network Flow 6 de 29

N

INFORMATICA PUC Minas SCIENCE

Algorithm design and analysis

— Ford-Fulkerson Algorithm —

Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas

.
®
.
.
.
.

Feb 2023

Developing the Algorithm

» A is a directed graph G = (V. E)

20 10

o« i P
k1

Silvio Guimaraes Network Flow 8 de 29

Developing the Algorithm

» A is a directed graph G = (V. E)

» Let us take a greedy approach.
1. Start with along all edges.

0/20 0/10

o

0/10 l 0/20

Silvio Guimaraes Network Flow 8 de 29

Developing the Algorithm

» A is a directed graph G = (V. E)

» Let us take a greedy approach.
1. Start with along all edges.

2. Find an s-t path and push ESuDIE R I WIS possible.
2

Tr <>
hof hog

Silvio Guimaraes Network Flow 8 de 29

«

20
10

10
20

Developing the Algorithm

» A is a directed graph G = (V. E)

» Let us take a greedy approach.
1. Start with along all edges.

2. Find an s-t path and push ESuDIE R I WIS possible.
3. : Push flow along edges with capacity and

on edges already carrying flow.

Silvio Guimaraes Network Flow 8 de 29

Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.

20 10

o« i e
k1

Silvio Guimaraes Network Flow 9 de 29

Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.

0/20 0/10

o

0/10 l 0/20

Silvio Guimaraes Network Flow 9 de 29

Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.
(ii) edges — For each edge e = (u,v) € E such that

f(e) < c(e), Gr contains the edge (u, v) with a
c(e) — f(e).

(iii) edges — For each edge e € E such that f(e) > 0, Gf
contains the edge e’ = (v, u) with a residual capacity f(e).

@— /e —®

0/20 0/10

@:(0/30

0/10 l 0/20

No O =0

Silvio Guimaraes Network Flow 9 de 29

Residual Graph

» Given a flow network G = (V, E) and a flow f on G, the
graph Gs of G with respect to f is a directed graph such that

(i) Nodes — Gf has the same nodes as G.
(ii) edges — For each edge e = (u,v) € E such that

f(e) < c(e), Gr contains the edge (u, v) with a
c(e) — f(e).

(iii) edges — For each edge e € E such that f(e) > 0, Gf
contains the edge e’ = (v, u) with a residual capacity f(e).

@— f/c —>®
0/20 0/10 200 / \010

\
] €
N @O, =0 3

Silvio Guimaraes Network Flow 9 de 29

Augmenting Paths in a Residual Graph

> Let P be a QAL in Gr.

> QRN EEMAN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s
0/20 0/10 (RSN bottleneck(P, f) B
foreach edge e = (u,v) € P do
0/30 if e is a forward edge then
0/10\4/{0/20

‘ increase f(e) in G by b
Silvio Guimaraes Network Flow 10 de 29

else if e is a backward edge then
‘ decrease f(e) in G by b;
end

0 N oA W N =

Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a

source s and a sink t nodes.
s output: The distances of the vertices from s
0 0 \ Let b = [N CZNDY
0 30
s
20
0

17 foreach edge e = (u,v) € P do
if e is a forward edge then
‘ increase f(e) in G by b
else if e is a backward edge then
‘ decrease f(e) in G by b;
end

10

0\/

0 N oA W N =

Silvio Guimaraes Network Flow 10 de 29

Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a
source s and a sink t nodes.
x, output: The distances of the vertices from s

2 foreach edge e = (u,v) € P do
0 30 3 if e is a forward edge then
10 20’ 4 ‘ increase f(e) in G by b
0 0 5 else if e is a backward edge then
6 ‘ decrease f(e) in G by b;
7 end
8

Silvio Guimaraes Network Flow 10 de 29

Augmenting Paths in a Residual Graph

> Let P be a QAL in Gr.

> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s
20/20 0/10 (RS bottleneck(P, f) B
foreach edge e = (u,v) € P do
20/30 if e is a forward edge then
0/10\4/{20/20

‘ increase f(e) in G by b
Silvio Guimaraes Network Flow 10 de 29

else if e is a backward edge then
‘ decrease f(e) in G by b;
end

0 N oA W N =

Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRIS EEMAN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a
source s and a sink t nodes.
output: The distances of the vertices from s

Let b = [JSUEHSNENDY ;

foreach edge e = (u,v) € P do
if e is a forward edge then
‘ increase f(e) in G by b
else if e is a backward edge then
‘ decrease f(e) in G by b;
end

20 '
20 10

10 ‘\

|

S,

0 N oA W N =

Silvio Guimaraes Network Flow 10 de 29

Augmenting Paths in a Residual Graph

- Let P be - [T n G
> QRN is the minimum residual capacity of any edge in P.

> The following operation augment(f, P) yields a new flow " in G:

Algorithm: Augmented path
input : A graph G = (V,E), a path P and a
source s and a sink t nodes.
output: The distances of the vertices from s

%2 10° et b = RG]
2 foreach edge e = (u,v) € P do
10 20 3 if e is a forward edge then
0 0 4 ‘ increase f(e) in G by b
10 20 5 else if e is a backward edge then
6 ‘ decrease f(e) in G by b;
7 end
8

Silvio Guimaraes Network Flow 10 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

Silvio Guimaries Network Flow 11 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.
» Only need to check edges and internal nodes in P.

Silvio Guimaries Network Flow 11 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

Silvio Guimaries Network Flow 11 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <

f(e) + (c(e) — f(e)) = c(e).

Silvio Guimaries Network Flow 11 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <

fe) + (c(e) — f(e)) = c(e).
> e is a backward edge:
c(e) > f(e) > f'(e) = f(e) — bottleneck(P, f) > f(e) — f(e) = 0.

Silvio Guimaries Network Flow 11 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).
> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <
f(e) + (c(e) — f(e)) = c(e).
> e is a backward edge:
c(e) > f(e) > f'(e) = f(e) — bottleneck(P, f) > f(e) — f(e) = 0.

» Conservation condition on internal node v € P.

Silvio Guimaries Network Flow 11 de 29

Correctness of augment(f, P)

» A simple s-t path in the residual graph is an EIuEAI M EId N

» Let 1’ be the flow returned by augment(f, P).
» Claim: f’is a flow. Verify capacity and conservation conditions.

» Only need to check edges and internal nodes in P.
» Capacity condition on e = (u,v) € Gs: Note that

bottleneck(P, 1) | of (u,v).

> e is a forward edge: 0 < f(e) < f'(e) = f(e) + bottleneck(P, f) <
fe) + (c(e) — f(e)) = c(e).
> e is a backward edge:
c(e) > f(e) > f'(e) = f(e) — bottleneck(P, f) > f(e) — f(e) = 0.
» Conservation condition on internal node v € P. Four cases to work
out.

Silvio Guimaries Network Flow 11 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve € E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 0/20 0/10

4pre

20 0/10 l 0/20

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

Z
20 10 0/20 0/10 200 [\010
e« » ® a5y
30 G< 0/30 >(D 0 30 })
10 l 20 0/10 l 0/20 \010 /200
koS e &

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 " = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f" = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 20/20 0/10

1 o

20 0/10 l 20/20

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 20/20 0/10 0/[\ 10
20 N
@< 30 >@ @(20/30 :}@ (i/ 20 10 ?}
10 l 20 0/10 l 20/20 N 10 / o/
0 20
hod k"1 ol

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 " = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

0/ \ 10 0 10

20 10 20/20 0/10 20[0 \ 20’ . \
@< 30 >(D @< 20/30 >@ (i/ 20 10 ? 20 10 })

10\‘619/20 0/10\619/20/20 \010\ /A/Om 010 / 020

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f" = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 20/20 10/10

1 ot

20 10/10 l 20/20

Silvio Guimaraes Network Flow 12 de 29

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm

input : A graph G = (V,E), a source s and a sink t

nodes.
output: The flow f
1 f(e) =0, Ve€ E;

2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf;
4 f' = augment(f, P);
5 Update f to be f/;
6
7
8

Update the residual graph Gr to be Gp/;
end
return f;

20 10 20/20 10/10 . " \
@< 30 >@ G< 10/30 >(D Csﬁ 10 20 /?)
10 l 20 10/10 l 20/20 \ 0 / 0

10 \ 20
koS ko -

Silvio Guimaraes Network Flow 12 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers.

Silvio Guimaraes Network Flow 13 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

Silvio Guimaraes Network Flow 13 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P).

Silvio Guimaraes Network Flow 13 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

Silvio Guimaraes Network Flow 13 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

» Claim: Maximum value of any flow is C =)"_ . o< c(e).

Silvio Guimaraes Network Flow 13 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

» Claim: Maximum value of any flow is C =)"_ . o< c(e).

» Claim: Algorithm terminates in at most C iterations.

Silvio Guimaraes Network Flow 13 de 29

Termination of the Ford-Fulkerson Algorithm

» Claim: at each stage, flow values and residual capacities are
integers. Prove by [iNaSd

» Claim: Flow value strictly when we apply
augment(f, P). v(f') = v(f) + bottleneck(P, f) > v(f).

» Claim: Maximum value of any flow is C =)"_ . o< c(e).

» Claim: Algorithm terminates in at most C iterations.

» Claim: Algorithm runs in QOIEuI@Y time.

Silvio Guimaraes Network Flow 13 de 29

Correctness of the Ford-Fulkerson Algorithm

» How large can the flow be?

Silvio Guimaraes Network Flow 14 de 29

Correctness of the Ford-Fulkerson Algorithm

» How large can the flow be?

» Can we characterise the magnitude of the flow in terms of the
structure of the graph? For example, for every flow f,

V(f) < Cc= Zeout of s C(e)'
> Is there a better bound?

Silvio Guimaraes Network Flow 14 de 29

Correctness of the Ford-Fulkerson Algorithm

» How large can the flow be?

» Can we characterise the magnitude of the flow in terms of the
structure of the graph? For example, for every flow f,
V(f) <C= Zeout of s C(e)'

» Is there a better bound?

> Idea: An is a partition of V into sets A and B such that
secAand teB.

> of the cut (A, B) is c(A,B) =3 . out of 4 €(€)-

» Intuition: For every flow f, v(f) < c(A, B).

Silvio Guimaraes Network Flow 14 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.

Silvio Guimaries Network Flow 15 de 29

Fun Facts about Cuts

> Let f be any s-t flow and (A, B) any s-t cut.
» Claim: v(f) = FoUt(A) — F"(A).

Silvio Guimaries Network Flow 15 de 29

Fun Facts about Cuts

> Let f be any s-t flow and (A, B) any s-t cut.
» Claim: v(f) = FoUt(A) — F"(A).
> U(f) = F%(s) and F"(s) = 0 = v(F) = FoUE(s) — Fin(s).

Silvio Guimaries Network Flow 15 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.

» Claim: v(f) = foUt(A) — fin(A).
> u(F) = FoU(s) and F(s) = 0 = v(F) = FoU(s) — Fn(s).
» For every other node v € A, foUut(v) — f"(v) = 0.

Silvio Guimaries Network Flow 15 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.

» Claim: v(f) = foUt(A) — fin(A).
> u(F) = FoU(s) and F(s) = 0 = v(F) = FoU(s) — Fn(s).
» For every other node v € A, foUut(v) — f"(v) = 0.

> () = ea (FU(v) = F7(v)).

Silvio Guimaries Network Flow 15 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fOt(A) — Fn(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
> () = ea (F(v) = £7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.
> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).

Silvio Guimaries Network Flow 15 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fOt(A) — Fn(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
> () = ea (F(v) = £7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.
> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).
> ZVEA (fOUt.(V) - fm(v)) = Ze out of A f(e) - Ze into A f(e) =
foUt(A) — (A).

Silvio Guimaraes Network Flow 15 de 29

Fun Facts about Cuts

> Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fOt(A) — Fn(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, f*"(v) — f"(v) = 0.
> v(F) = Xyea (FO(v) — F7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.
> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).
> ZVEA (fOUt.(V) - fm(v)) = Ze out of A f(e) - Ze into A f(e) =
foUt(A) — (A).
» Corollary: v(f) = f"(B) — fU(B).

Silvio Guimaraes Network Flow 15 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fOt(A) — Fn(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
> () = ea (F(v) = £7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.
> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).

> ZVEA (fOUt.(V) - fin(v)) = Ze out of A f(e) - Ze into A f(e) =
FUt(A) — Fn(A).
» Corollary: v(f) = f"(B) — fU(B).
3l () < c(A B)}

Silvio Guimaraes Network Flow 15 de 29

Fun Facts about Cuts

» Let f be any s-t flow and (A, B) any s-t cut.
> Claim: v(f) = fUt(A) — fin(A).
» v(f) = foUt(s) and f"(s) = 0 = v(f) = FoUt(s) — f"(s).
» For every other node v € A, foUut(v) — f"(v) = 0.
> v(f) = Xyea (FU(v) = F7(v)).
> An edge e that has both ends in A or both ends out of A does not
contribute.

> An edge e that has its tail in A contributes f(e).
> An edge e that has its head in A contributes —f(e).

> Dvea (fOUt(V) = (V) = Xeourof af(€) = Xeino afle) =
fout(A) — f"(A).
» Corollary: v(f) = f"(B) — fU(B).
> 7/(f) < C(A, B) .
v(f) = () = F(A) < PP (A) = Y f(e)
e out of A
< Z c(e) = c(A, B).
e out of A

Silvio Guimaraes Network Flow 15 de 29

Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).

Silvio Guimaries Network Flow 16 de 29

Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).

» Very strong statement: The value of flow is < capacity of
ENA cut.

Silvio Guimaries Network Flow 16 de 29

Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).
» Very strong statement: The value of flow is < capacity of

ENA cut.
» Corollary: The maximum flow is, at most, the [HUEIESRETEIINA of
a cut.

Silvio Guimaraes Network Flow 16 de 29

Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).
» Very strong statement: The value of flow is < capacity of

ENA cut.
» Corollary: The maximum flow is, at most, the [HUEIESRETEIINA of
a cut.

» Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

Silvio Guimaraes Network Flow 16 de 29

Max-Flows and Min-Cuts

» Let f be any s-t flow and (A, B) any s-t cut. We proved
v(f) < c(A, B).
» Very strong statement: The value of flow is < capacity of

ENA cut.
» Corollary: The maximum flow is, at most, the [HUEIESRETEIINA of
a cut.

» Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

» Answer: Yes, and the Ford-Fulkerson algorithm computes this feiid!

Silvio Guimaraes Network Flow 16 de 29

Flows and Cuts

> Let 7 denote the flow computed by the RS NI ttAnE.

» Enough to show 3 s-t cut (A*, B*) such that v(f) = c(A*, B*).

» When the algorithm terminates, the EESIsDEIRSETIN has
no s-t path §

Silvio Guimaraes Network Flow 17 de 29

Flows and Cuts

» Let 7 denote the flow computed by the .
» Enough to show 3 s-t cut (A*, B*) such that v(f) = c(A*, B*).
» When the algorithm terminates, the has

no -t pov]

» Claim: If f is an s-t flow such that Gf has no s-t path, then there
is an s-t cut (A*, B*) such that v(f) = c(A*, B¥).
» Claim applies to any flow f such that G¢ has no s-t path, and not
just to the flow f computed by the Ford-Fulkerson algorithm.

Silvio Guimaraes Network Flow 17 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.

Silvio Guimaries Network Flow 18 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.

» Claim: (A*, B*) is an s-t cut.

Silvio Guimaries Network Flow 18 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and G¢ has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).

» A* = set of nodes reachable from s in Gf, B* = V — A*.

» Claim: (A*, B*) is an s-t cut.

» Claim: If e = (u, v) such that u € A*, v € B*, then

Silvio Guimaries Network Flow 18 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.
» Claim: (A*, B*) is an s-t cut.
» Claim: If e = (u, v) such that u € A*, v € B*, then f(e) = c(e).

Silvio Guimaries Network Flow 18 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.

v

Claim: (A*, B*) is an s-t cut.
Claim: If e = (u, v) such that u € A*, v € B*, then f(e) = c(e).
Claim: If ¢ = (4, V') such that v’ € B*, v/ € A*, then

v

v

Silvio Guimaries Network Flow 18 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut
(A*, B*), v(f) = c(A*, B¥).
» A* = set of nodes reachable from s in Gf, B* = V — A*.

v

Claim: (A*, B*) is an s-t cut.
Claim: If e = (u, v) such that u € A*, v € B*, then f(e) = c(e).
Claim: If ¢ = (J, V) such that v’ € B*, v/ € A*, then f(e’) =0

v

v

Silvio Guimaries Network Flow 18 de 29

Proof of Claim Relating Flows to Cuts

» Claim: f is an s-t flow and Gf has no s-t path = 3 s-t cut

(A*, B*), v(f) = c(A*, BY).
» A* = set of nodes reachable from s in Gf, B* = V — A*.
Claim: (A*, B*) is an s-t cut.
Claim: If e = (u, v) such that u € A*, v € B*, then f(e) = c(e).
Claim: If ¢ = (J, V) such that v’ € B*, v/ € A*, then f(e’) =0
Claim: v(f) = c(A*, B¥).

v

v

v

v

Silvio Guimaries Network Flow 18 de 29

Max-Flow Min-Cut Theorem

» The flow f computed by the Ford-Fulkerson algorithm is a
| maximum flow |

» Given a flow of maximum value, we can compute a

in O(m) time.

Silvio Guimaraes Network Flow 19 de 29

Max-Flow Min-Cut Theorem

» The flow f computed by the Ford-Fulkerson algorithm is a
| maximum flow |

» Given a flow of maximum value, we can compute a
PRty in O(m) time.

» In every flow network, there is a flow f and a cut (A, B) such
that v(f) = c(A, B).

> WESRERYINROTRMYXIIE]: in every flow network, the

maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

Silvio Guimaraes Network Flow 19 de 29

Max-Flow Min-Cut Theorem

» The flow f computed by the Ford-Fulkerson algorithm is a
| maximum flow |

» Given a flow of maximum value, we can compute a
PRty in O(m) time.

» In every flow network, there is a flow f and a cut (A, B) such
that v(f) = c(A, B).

> WESRERYINROTRMYXIIE]: in every flow network, the

maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

» Corollary: If all capacities in a flow network are ,
then there is a maximum flow f where every flow value f(e) is

Silvio Guimaraes Network Flow 19 de 29

N

INFORMATICA PUC Minas SCIENCE

Algorithm design and analysis

— Scaling Max-Flow Algorithm —

Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas

.
®
.
.
.
.

Feb 2023

Bad Augmenting Paths

100/ﬁ1>\100
100\(&100

Silvio Guimaraes Network Flow 21 de 29

Bad Augmenting Paths

o/1oo/ﬁl>\o/1oo
(:§ 0/1 g:)

0/100 l 0/100

kot

100/ﬁ1>\100
100\(&100

Silvio Guimaraes Network Flow 21 de 29

Bad Augmenting Paths
o/1oo/ﬁl>\o/1oo &WO

GRS

0/100 0/100 %%
100/?)\100
100\(&100

Silvio Guimaraes Network Flow 21 de 29

Bad Augmenting Paths

T &%

o o o
{7

100/ﬁ1>\100
100\(&100

Silvio Guimaraes Network Flow 21 de 29

Bad Augmenting Paths

2 s &
<> 0> 0>

mOﬁD\mo
100\(&100
:
1 /100 /100
0/100 /100
N

Silvio Guimaraes Network Flow 21 de 29

Bad Augmenting Paths
o/1oo/ﬁl>\o/1oo & &
G<0/100 0/100>:D Géyga Gé%ﬂia

}%

1/100 0/100

o/1oo /100 é ;\‘
N

Silvio Guimaraes Network Flow 21 de 29

Bad Augmenting Paths
0/100/ﬁ9\0/100 & &
G<0/100 0/100>:D Géyga Gé%ﬂia

W
1/100 0/100 100
0/100 /100

N

Silvio Guimaraes Network Flow 21 de 29

Improving Ford-Fulkerson Algorithm

» Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a .

> ldea: number of iterations by picking s-t path with
bottleneck edge of largest capacity.

Silvio Guimaraes Network Flow 22 de 29

Improving Ford-Fulkerson Algorithm

» Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a .

> ldea: number of iterations by picking s-t path with
bottleneck edge of largest capacity. Computing this path can slow
down each iteration considerably.

Silvio Guimaraes Network Flow 22 de 29

Other Maximum Flow Algorithms

» Running time of the Ford-Fulkerson algorithm is O(mC), which is

O Ls [T WAIIWIEW: polynomial in the magnitudes of the numbers

in the input.

» Desire a [SignlASWGIWEIR algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).

Silvio Guimaraes Network Flow 23 de 29

Other Maximum Flow Algorithms

» Running time of the Ford-Fulkerson algorithm is O(mC), which is
: polynomial in the magnitudes of the numbers
in the input.

» Desire a algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).

> : choose augmenting path to be the
shortest path in G (use breadth-first search). Algorithm runs in
O(mn) iterations.

» Improved algorithms take time O(mnlogn), O(n3), etc. on
augmenting paths. Runs in O(n?m) or O(n?) time.

Silvio Guimaraes Network Flow 23 de 29

ML

INFORMATICA PUC Minas SCIENCE

Algorithm design and analysis

— Exercises —
Silvio Guimaraes

Graduate Program in Informatics — PPGINF
Image and Multimedia Data Science Laboratory — IMScience
Pontifical Catholic University of Minas Gerais — PUC Minas

Feb 2023

e

Compute the maximum flow

9 —
10 4 15 15 10
B = 8§ — 10 —>
15 4 6 15 10

30 —>

Silvio Guimaraes Network Flow 25 de 29

Compute the maximum flow

4 —>
10 2 3 6 10

Silvio Guimaraes Network Flow 26 de 29

Bipartite graph matching

BIPARTITE GRAPH MATCHING

INSTANCE Let G = (LUR, E) be an undirected graph. M C E
is a fuEleulrd if each node appear in, at most, one

edge in M.

SOLUTION Find a matching.

Network Flow 27 de 29

Silvio Guimaraes

Bipartite graph matching

BIPARTITE GRAPH MATCHING

INSTANCE Let G = (LUR, E) be an undirected graph. M C E
is a fuEleulrd if each node appear in, at most, one

edge in M.

SOLUTION Find a matching.

Network Flow 27 de 29

Silvio Guimaraes

Bipartite graph matching

BIPARTITE GRAPH MATCHING

INSTANCE Let G = (LUR, E) be an undirected graph. M C E
is a fuEleulrd if each node appear in, at most, one

edge in M.

SOLUTION Find a matching.

Network Flow 27 de 29

Silvio Guimaraes

Edge Disjoint Paths

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edge-disjoint s-t paths.

Silvio Guimaraes Network Flow 28 de 29

Edge Disjoint Paths

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edge-disjoint s-t paths.

Silvio Guimaraes Network Flow 28 de 29

Edge Disjoint Paths

DISJOINT PATH PROBLEM

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edge-disjoint s-t paths.

Silvio Guimaraes Network Flow 28 de 29

Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edges whose removal dis-

connects t from s

Silvio Guimaraes Network Flow 29 de 29

Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edges whose removal dis-

connects t from s

Silvio Guimaraes Network Flow 29 de 29

Network Connectivity

NETWORK CONNECTIVITY

INSTANCE Let G = (G, E) be a directed graph and two ver-
tices s and t

SOLUTION Find a of edges whose removal dis-

connects t from s

Silvio Guimaraes Network Flow 29 de 29

	Maximum Flow and Minimum Cut
	Ford-Fulkerson Algorithm
	Scaling Max-Flow Algorithm
	Exercises
	Network flow
	Bipartite graph matching
	Edge Disjoint Paths
	Network Connectivity

