
Algorithm design and analysis

— Network Flow —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



Algorithm design and analysis

— Maximum Flow and Minimum Cut —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



Maximum Flow and Minimum Cut

I Two rich algorithmic problems.
I Fundamental problems in combinatorial optimization.
I Beautiful mathematical duality between flows and cuts.
I Numerous non-trivial applications:

I Bipartite matching .

I Data mining.

I Project selection.

I Airline scheduling.

I Baseball elimination .

I Image segmentation .

I Network connectivity .

I Open-pit mining.

I Network reliability.

I Distributed computing.

I Egalitarian stable matching.

I Security of statistical data.

I Network intrusion detection.

I Multi-camera scene
reconstruction.

I Gene function prediction.

Silvio Guimarães Network Flow 3 de 29



Flow Networks

Silvio Guimarães Network Flow 4 de 29

I Use directed graphs to model transportation networks :
I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.



Flow Networks

Silvio Guimarães Network Flow 4 de 29

I Use directed graphs to model transportation networks :
I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph
G = (V ,E )

I Each edge e ∈ E has a capacity
c(e) > 0.

I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal .

s

u

v

t

20

10

10

30

20



Flow Networks

Silvio Guimarães Network Flow 4 de 29

I Use directed graphs to model transportation networks :
I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph
G = (V ,E )

I Each edge e ∈ E has a capacity
c(e) > 0.

I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal .

s

u

v

ts

u

v

t

20

10

10

30

20



Defining Flow

I In a flow network G = (V ,E ), an s-t flow is a function
f : E → R+ such that
(i) Capacity conditions For each e ∈ E , 0 ≤ f (e) ≤ c(e).

(ii) Conservation conditions For each internal node v ,∑
e into v

f (e) =
∑

e out of v

f (e)

I The value of a flow is ν(f ) =
∑

e out of s f (e).

I Useful notation:
f out(v) =

∑
e out of v f (e) f in(v) =

∑
e into v f (e)

For S ⊆ V ,
f out(S) =

∑
e out of S f (e) f in(S) =

∑
e into S f (e)

Silvio Guimarães Network Flow 5 de 29



Defining Flow

I In a flow network G = (V ,E ), an s-t flow is a function
f : E → R+ such that
(i) Capacity conditions For each e ∈ E , 0 ≤ f (e) ≤ c(e).

(ii) Conservation conditions For each internal node v ,∑
e into v

f (e) =
∑

e out of v

f (e)

I The value of a flow is ν(f ) =
∑

e out of s f (e).
I Useful notation:

f out(v) =
∑

e out of v f (e) f in(v) =
∑

e into v f (e)
For S ⊆ V ,
f out(S) =

∑
e out of S f (e) f in(S) =

∑
e into S f (e)

Silvio Guimarães Network Flow 5 de 29



Maximum-Flow Problem

Silvio Guimarães Network Flow 6 de 29

Maximum Flow

INSTANCE A flow network G

SOLUTION The flow with largest value in G

I Assumptions :

1. No edges enter s, no edges leave t.

2. There is at least one edge incident
on each node.

3. All edge capacities are integers .

s

u

v

t

20

10

10

30

20



Maximum-Flow Problem

Silvio Guimarães Network Flow 6 de 29

Maximum Flow

INSTANCE A flow network G

SOLUTION The flow with largest value in G

I Assumptions :

1. No edges enter s, no edges leave t.
2. There is at least one edge incident

on each node.

3. All edge capacities are integers .

s

u

v

t

20

10

10

30

20



Maximum-Flow Problem

Silvio Guimarães Network Flow 6 de 29

Maximum Flow

INSTANCE A flow network G

SOLUTION The flow with largest value in G

I Assumptions :

1. No edges enter s, no edges leave t.
2. There is at least one edge incident

on each node.
3. All edge capacities are integers .

s

u

v

t

20/20

10/10

10/10

10/30

20/20



Algorithm design and analysis

— Ford-Fulkerson Algorithm —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



Developing the Algorithm

Silvio Guimarães Network Flow 8 de 29

I A flow network is a directed graph G = (V ,E )

I Let us take a greedy approach.

1. Start with zero flow along all edges.
2. Find an s-t path and push as much flow along it as possible.

3. Key idea : Push flow along edges with leftover capacity and

undo flow on edges already carrying flow.

s

u

v

t

20

10

10

30

20



Developing the Algorithm

Silvio Guimarães Network Flow 8 de 29

I A flow network is a directed graph G = (V ,E )
I Let us take a greedy approach.

1. Start with zero flow along all edges.

2. Find an s-t path and push as much flow along it as possible.

3. Key idea : Push flow along edges with leftover capacity and

undo flow on edges already carrying flow.

s

u

v

t

0/20

0/10

0/10

0/30

0/20



Developing the Algorithm

Silvio Guimarães Network Flow 8 de 29

I A flow network is a directed graph G = (V ,E )
I Let us take a greedy approach.

1. Start with zero flow along all edges.
2. Find an s-t path and push as much flow along it as possible.

3. Key idea : Push flow along edges with leftover capacity and

undo flow on edges already carrying flow.

s

u

v

t

20

10

10

30

20

s

u

v

t

20

10

10

30

20

20

30

20



Developing the Algorithm

Silvio Guimarães Network Flow 8 de 29

I A flow network is a directed graph G = (V ,E )
I Let us take a greedy approach.

1. Start with zero flow along all edges.
2. Find an s-t path and push as much flow along it as possible.

3. Key idea : Push flow along edges with leftover capacity and

undo flow on edges already carrying flow.

s

u

v

t

20

10

10

30

20

s

u

v

t

20

10

10

30

20

20

30

20

s

u

v

t

20

2010

10

30 10



Residual Graph

Silvio Guimarães Network Flow 9 de 29

I Given a flow network G = (V ,E ) and a flow f on G , the residual
graph Gf of G with respect to f is a directed graph such that
(i) Nodes – Gf has the same nodes as G .

(ii) Forward edges – For each edge e = (u, v) ∈ E such that
f (e) < c(e), Gf contains the edge (u, v) with a residual capacity
c(e)− f (e).

(iii) Backward edges – For each edge e ∈ E such that f (e) > 0, Gf

contains the edge e′ = (v , u) with a residual capacity f (e).

s

u

v

t

20

10

10

30

20



Residual Graph

Silvio Guimarães Network Flow 9 de 29

I Given a flow network G = (V ,E ) and a flow f on G , the residual
graph Gf of G with respect to f is a directed graph such that
(i) Nodes – Gf has the same nodes as G .

(ii) Forward edges – For each edge e = (u, v) ∈ E such that
f (e) < c(e), Gf contains the edge (u, v) with a residual capacity
c(e)− f (e).

(iii) Backward edges – For each edge e ∈ E such that f (e) > 0, Gf

contains the edge e′ = (v , u) with a residual capacity f (e).

s

u

v

t

0/20

0/10

0/10

0/30

0/20



Residual Graph

Silvio Guimarães Network Flow 9 de 29

I Given a flow network G = (V ,E ) and a flow f on G , the residual
graph Gf of G with respect to f is a directed graph such that
(i) Nodes – Gf has the same nodes as G .
(ii) Forward edges – For each edge e = (u, v) ∈ E such that

f (e) < c(e), Gf contains the edge (u, v) with a residual capacity
c(e)− f (e).

(iii) Backward edges – For each edge e ∈ E such that f (e) > 0, Gf

contains the edge e′ = (v , u) with a residual capacity f (e).

s

u

v

t

0/20

0/10

0/10

0/30

0/20

u v

u v

f /c

c − f

f



Residual Graph

Silvio Guimarães Network Flow 9 de 29

I Given a flow network G = (V ,E ) and a flow f on G , the residual
graph Gf of G with respect to f is a directed graph such that
(i) Nodes – Gf has the same nodes as G .
(ii) Forward edges – For each edge e = (u, v) ∈ E such that

f (e) < c(e), Gf contains the edge (u, v) with a residual capacity
c(e)− f (e).

(iii) Backward edges – For each edge e ∈ E such that f (e) > 0, Gf

contains the edge e′ = (v , u) with a residual capacity f (e).

s

u

v

t

0/20

0/10

0/10

0/30

0/20

u v

u v

f /c

c − f

f

s

u

v

t

20
0

10
0

10
0

300

20
0



Augmenting Paths in a Residual Graph

Silvio Guimarães Network Flow 10 de 29

s

u

v

t

0/20

0/10

0/10

0/30

0/20

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8



Augmenting Paths in a Residual Graph

Silvio Guimarães Network Flow 10 de 29

s

u

v

t

20
0

10
0

10
0

300

20
0

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8



Augmenting Paths in a Residual Graph

Silvio Guimarães Network Flow 10 de 29

s

u

v

t

20
0

10
0

10
0

300

20
0

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8



Augmenting Paths in a Residual Graph

Silvio Guimarães Network Flow 10 de 29

s

u

v

t

20/20

0/10

0/10

20/30

20/20

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8



Augmenting Paths in a Residual Graph

Silvio Guimarães Network Flow 10 de 29

s

u

v

t

0
20

10
0

10
0

1020

0
20

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8



Augmenting Paths in a Residual Graph

Silvio Guimarães Network Flow 10 de 29

s

u

v

t

0
20

0
10

0
10

2010

0
20

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual capacity of any edge in P.

I The following operation augment(f ,P) yields a new flow f ′ in G :

Algorithm: Augmented path
input : A graph G = (V ,E ), a path P and a

source s and a sink t nodes.
output: The distances of the vertices from s

1 Let b = bottleneck(P, f ) ;
2 foreach edge e = (u, v) ∈ P do
3 if e is a forward edge then
4 increase f (e) in G by b
5 else if e is a backward edge then
6 decrease f (e) in G by b;
7 end
8



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).
I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤

f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P. Four cases to work

out.

Silvio Guimarães Network Flow 11 de 29



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.

I Capacity condition on e = (u, v) ∈ Gf : Note that
bottleneck(P, f ) ≤ residual capacity of (u, v).

I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤
f (e) + (c(e)− f (e)) = c(e).

I e is a backward edge:
c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work
out.

Silvio Guimarães Network Flow 11 de 29



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).

I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤
f (e) + (c(e)− f (e)) = c(e).

I e is a backward edge:
c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work
out.

Silvio Guimarães Network Flow 11 de 29



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).
I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤

f (e) + (c(e)− f (e)) = c(e).

I e is a backward edge:
c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work
out.

Silvio Guimarães Network Flow 11 de 29



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).
I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤

f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work
out.

Silvio Guimarães Network Flow 11 de 29



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).
I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤

f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P.

Four cases to work
out.

Silvio Guimarães Network Flow 11 de 29



Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path .
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that

bottleneck(P, f ) ≤ residual capacity of (u, v).
I e is a forward edge: 0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤

f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P. Four cases to work

out.

Silvio Guimarães Network Flow 11 de 29



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

0/20

0/10

0/10

0/30

0/20



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

0/20

0/10

0/10

0/30

0/20

s

u

v

t

20
0

10
0

10
0

300

20
0



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

0/20

0/10

0/10

0/30

0/20

s

u

v

t

20
0

10
0

10
0

300

20
0

s

u

v

t

20
0

10
0

10
0

300

20
0



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

20/20

0/10

0/10

20/30

20/20



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

20/20

0/10

0/10

20/30

20/20

s

u

v

t

0
20

10
0

10
0

1020

0
20



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

20/20

0/10

0/10

20/30

20/20

s

u

v

t

0
20

10
0

10
0

1020

0
20

s

u

v

t

0
20

10
0

10
0

1020

0
20



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

20/20

10/10

10/10

10/30

20/20



Ford-Fulkerson Algorithm

Silvio Guimarães Network Flow 12 de 29

Algorithm: Ford-Fulkerson Algorithm
input : A graph G = (V ,E ), a source s and a sink t

nodes.
output: The flow f

1 f (e) = 0, ∀e ∈ E ;
2 while there is a path s-t in the residual graph Gf do
3 Let P be a simple s-t path in Gf ;
4 f ′ = augment(f ,P);
5 Update f to be f ′;
6 Update the residual graph Gf to be Gf ′ ;
7 end
8 return f ;

s

u

v

t

20

10

10

30

20

s

u

v

t

20/20

10/10

10/10

10/30

20/20

s

u

v

t

0
20

0
10

0
10

2010

0
20



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers.

Prove by induction .
I Claim: Flow value strictly increases when we apply

augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).
I Claim: Maximum value of any flow is C =

∑
e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers. Prove by induction .

I Claim: Flow value strictly increases when we apply
augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).
I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers. Prove by induction .

I Claim: Flow value strictly increases when we apply
augment(f ,P).

v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).
I Claim: Maximum value of any flow is C =

∑
e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers. Prove by induction .

I Claim: Flow value strictly increases when we apply
augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).
I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers. Prove by induction .

I Claim: Flow value strictly increases when we apply
augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers. Prove by induction .

I Claim: Flow value strictly increases when we apply
augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).
I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are
integers. Prove by induction .

I Claim: Flow value strictly increases when we apply
augment(f ,P). v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).
I Claim: Algorithm terminates in at most C iterations.
I Claim: Algorithm runs in O(mC ) time.

Silvio Guimarães Network Flow 13 de 29



Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the
structure of the graph? For example, for every flow f ,
ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?
I Idea: An s-t cut is a partition of V into sets A and B such that

s ∈ A and t ∈ B .
I Capacity of the cut (A,B) is c(A,B) =

∑
e out of A c(e).

I Intuition: For every flow f , ν(f ) ≤ c(A,B).

Silvio Guimarães Network Flow 14 de 29



Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?
I Can we characterise the magnitude of the flow in terms of the

structure of the graph? For example, for every flow f ,
ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?

I Idea: An s-t cut is a partition of V into sets A and B such that
s ∈ A and t ∈ B .

I Capacity of the cut (A,B) is c(A,B) =
∑

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).

Silvio Guimarães Network Flow 14 de 29



Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?
I Can we characterise the magnitude of the flow in terms of the

structure of the graph? For example, for every flow f ,
ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?
I Idea: An s-t cut is a partition of V into sets A and B such that

s ∈ A and t ∈ B .
I Capacity of the cut (A,B) is c(A,B) =

∑
e out of A c(e).

I Intuition: For every flow f , ν(f ) ≤ c(A,B).

Silvio Guimarães Network Flow 14 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).

I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.

I ν(f ) =
∑

v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not
contribute.

I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A

(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) =

f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).
I ν(f ) ≤ c(A,B) .

ν(f ) = f out(A)− f in(A) ≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

Silvio Guimarães Network Flow 15 de 29



Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved
ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of
any cut.

I Corollary: The maximum flow is, at most, the smallest capacity of
a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !

Silvio Guimarães Network Flow 16 de 29



Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved
ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of
any cut.

I Corollary: The maximum flow is, at most, the smallest capacity of
a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !

Silvio Guimarães Network Flow 16 de 29



Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved
ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of
any cut.

I Corollary: The maximum flow is, at most, the smallest capacity of
a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !

Silvio Guimarães Network Flow 16 de 29



Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved
ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of
any cut.

I Corollary: The maximum flow is, at most, the smallest capacity of
a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !

Silvio Guimarães Network Flow 16 de 29



Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved
ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of
any cut.

I Corollary: The maximum flow is, at most, the smallest capacity of
a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at
most the maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut !

Silvio Guimarães Network Flow 16 de 29



Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm .

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).
I When the algorithm terminates, the residual graph has

no s-t path .

I Claim: If f is an s-t flow such that Gf has no s-t path, then there
is an s-t cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

I Claim applies to any flow f such that Gf has no s-t path, and not
just to the flow f̄ computed by the Ford-Fulkerson algorithm.

Silvio Guimarães Network Flow 17 de 29



Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm .

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).
I When the algorithm terminates, the residual graph has

no s-t path .
I Claim: If f is an s-t flow such that Gf has no s-t path, then there

is an s-t cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).
I Claim applies to any flow f such that Gf has no s-t path, and not

just to the flow f̄ computed by the Ford-Fulkerson algorithm.

Silvio Guimarães Network Flow 17 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.
I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e ′) = 0

.
I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.
I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e ′) = 0

.
I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.

I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e ′) = 0

.
I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e ′) = 0

.
I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then f (e) = c(e).
I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e ′) = 0

.

I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then f (e) = c(e).
I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then f (e ′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut
(A∗,B∗), ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then f (e) = c(e).
I Claim: If e ′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then f (e ′) = 0.
I Claim: ν(f ) = c(A∗,B∗).

Silvio Guimarães Network Flow 18 de 29



Max-Flow Min-Cut Theorem

Silvio Guimarães Network Flow 19 de 29

I The flow f̄ computed by the Ford-Fulkerson algorithm is a
maximum flow .

I Given a flow of maximum value, we can compute a
minimum s-t cut in O(m) time.

I In every flow network, there is a flow f and a cut (A,B) such
that ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem : in every flow network, the
maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers ,
then there is a maximum flow f where every flow value f (e) is
an integer .



Max-Flow Min-Cut Theorem

Silvio Guimarães Network Flow 19 de 29

I The flow f̄ computed by the Ford-Fulkerson algorithm is a
maximum flow .

I Given a flow of maximum value, we can compute a
minimum s-t cut in O(m) time.

I In every flow network, there is a flow f and a cut (A,B) such
that ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem : in every flow network, the
maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers ,
then there is a maximum flow f where every flow value f (e) is
an integer .



Max-Flow Min-Cut Theorem

Silvio Guimarães Network Flow 19 de 29

I The flow f̄ computed by the Ford-Fulkerson algorithm is a
maximum flow .

I Given a flow of maximum value, we can compute a
minimum s-t cut in O(m) time.

I In every flow network, there is a flow f and a cut (A,B) such
that ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem : in every flow network, the
maximum value of an s-t flow is equal to the minimum
capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers ,
then there is a maximum flow f where every flow value f (e) is
an integer .



Algorithm design and analysis

— Scaling Max-Flow Algorithm —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100

s

u

v

t

0/100

0/100

0/100

0/1

0/100



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100

s

u

v

t

0/100

0/100

0/100

0/1

0/100

s

u

v

t

100
0

100
0

100
0

10

100
0



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100

s

u

v

t

0/100

0/100

0/100

0/1

0/100

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

100
0

100
0

100
0

10

100
0



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100

s

u

v

t

0/100

0/100

0/100

0/1

0/100

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

1/100

0/100

0/100

1/1

1/100



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100

s

u

v

t

0/100

0/100

0/100

0/1

0/100

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

1/100

0/100

0/100

1/1

1/100

s

u

v

t

99
1

100
0

100
0

01

99
1



Bad Augmenting Paths

Silvio Guimarães Network Flow 21 de 29

s

u

v

t

100

100

100

1

100

s

u

v

t

0/100

0/100

0/100

0/1

0/100

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

100
0

100
0

100
0

10

100
0

s

u

v

t

1/100

0/100

0/100

1/1

1/100

s

u

v

t

99
1

100
0

100
0

01

99
1

s

u

v

t

99
1

100
0

100
0

01

99
1



Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a low capacity .

I Idea: decrease number of iterations by picking s-t path with
bottleneck edge of largest capacity.

Computing this path can slow
down each iteration considerably.

Silvio Guimarães Network Flow 22 de 29



Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge
is the augmenting path has a low capacity .

I Idea: decrease number of iterations by picking s-t path with
bottleneck edge of largest capacity. Computing this path can slow
down each iteration considerably.

Silvio Guimarães Network Flow 22 de 29



Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial : polynomial in the magnitudes of the numbers
in the input.

I Desire a strongly polynomial algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).

I Edmonds-Karp, Dinitz : choose augmenting path to be the
shortest path in Gf (use breadth-first search). Algorithm runs in
O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc. on
augmenting paths. Runs in O(n2m) or O(n3) time.

Silvio Guimarães Network Flow 23 de 29



Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial : polynomial in the magnitudes of the numbers
in the input.

I Desire a strongly polynomial algorithm: running time is depends
only on the size of the graph and is independent of the numerical
values of the capacities (as long as numerical operations take O(1)
time).

I Edmonds-Karp, Dinitz : choose augmenting path to be the
shortest path in Gf (use breadth-first search). Algorithm runs in
O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc. on
augmenting paths. Runs in O(n2m) or O(n3) time.

Silvio Guimarães Network Flow 23 de 29



Algorithm design and analysis

— Exercises —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023



Compute the maximum flow

Silvio Guimarães Network Flow 25 de 29

s

a

b

tc d

e

f

10

5

15

4

9

15

6

8

30

15

15

10

10

104



Compute the maximum flow

Silvio Guimarães Network Flow 26 de 29

s

a

tc d

f

10

10

2

4

8

9

6 10

10



Bipartite graph matching

Silvio Guimarães Network Flow 27 de 29

Bipartite graph matching

INSTANCE Let G = (L∪R,E ) be an undirected graph. M ⊆ E

is a matching if each node appear in, at most, one
edge in M.

SOLUTION Find a max cardinality matching.

a

b

c

d

e

f

g

h

i

j



Bipartite graph matching

Silvio Guimarães Network Flow 27 de 29

Bipartite graph matching

INSTANCE Let G = (L∪R,E ) be an undirected graph. M ⊆ E

is a matching if each node appear in, at most, one
edge in M.

SOLUTION Find a max cardinality matching.

a

b

c

d

e

f

g

h

i

j



Bipartite graph matching

Silvio Guimarães Network Flow 27 de 29

Bipartite graph matching

INSTANCE Let G = (L∪R,E ) be an undirected graph. M ⊆ E

is a matching if each node appear in, at most, one
edge in M.

SOLUTION Find a max cardinality matching.

a

b

c

d

e

f

g

h

i

j



Edge Disjoint Paths

Silvio Guimarães Network Flow 28 de 29

Disjoint path problem

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a max number of edge-disjoint s-t paths.



Edge Disjoint Paths

Silvio Guimarães Network Flow 28 de 29

Disjoint path problem

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a max number of edge-disjoint s-t paths.

s

a

b

tc d

e

f



Edge Disjoint Paths

Silvio Guimarães Network Flow 28 de 29

Disjoint path problem

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a max number of edge-disjoint s-t paths.

s

a

b

tc d

e

f



Network Connectivity

Silvio Guimarães Network Flow 29 de 29

Network Connectivity

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a min number of edges whose removal dis-
connects t from s



Network Connectivity

Silvio Guimarães Network Flow 29 de 29

Network Connectivity

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a min number of edges whose removal dis-
connects t from s

s

a

b

tc d

e

f



Network Connectivity

Silvio Guimarães Network Flow 29 de 29

Network Connectivity

INSTANCE Let G = (G ,E ) be a directed graph and two ver-
tices s and t

SOLUTION Find a min number of edges whose removal dis-
connects t from s

s

a

b

tc d

e

f


	Maximum Flow and Minimum Cut
	Ford-Fulkerson Algorithm
	Scaling Max-Flow Algorithm
	Exercises
	Network flow 
	Bipartite graph matching
	Edge Disjoint Paths
	Network Connectivity


