
Algorithm design and analysis

— Tractability and Intractability —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm design and analysis

— Intractability —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.

I Reductions.
I Local search.
I Randomization.

I Anti-patterns
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.

Silvio Guimarães Tractability and Intractability 3 de 50

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.
I Reductions.
I Local search.
I Randomization.

I Anti-patterns
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.

Silvio Guimarães Tractability and Intractability 3 de 50

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.
I Reductions.
I Local search.
I Randomization.

I Anti-patterns
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.

Silvio Guimarães Tractability and Intractability 3 de 50

Computational Tractability

I When is an algorithm an efficient solution to a problem?

When its running time is polynomial in the size of the input.

I A problem is computationally tractable

if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

Silvio Guimarães Tractability and Intractability 4 de 50

Computational Tractability

I When is an algorithm an efficient solution to a problem?
When its running time is polynomial in the size of the input.

I A problem is computationally tractable

if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

Silvio Guimarães Tractability and Intractability 4 de 50

Computational Tractability

I When is an algorithm an efficient solution to a problem?
When its running time is polynomial in the size of the input.

I A problem is computationally tractable

if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

Silvio Guimarães Tractability and Intractability 4 de 50

Computational Tractability

I When is an algorithm an efficient solution to a problem?
When its running time is polynomial in the size of the input.

I A problem is computationally tractable

if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

Silvio Guimarães Tractability and Intractability 4 de 50

Problem Classification

Silvio Guimarães Tractability and Intractability 5 de 50

I Classify problems based on whether they admit efficient solutions or not .

I Some extremely hard problems cannot be solved efficiently (e.g., chess on
an n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!

Problem Classification

Silvio Guimarães Tractability and Intractability 5 de 50

I Classify problems based on whether they admit efficient solutions or not .

I Some extremely hard problems cannot be solved efficiently (e.g., chess on
an n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!

Problem Classification

Silvio Guimarães Tractability and Intractability 5 de 50

I Classify problems based on whether they admit efficient solutions or not .

I Some extremely hard problems cannot be solved efficiently (e.g., chess on
an n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!

Algorithm design and analysis

— Reductions —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Polynomial-Time Reduction

I The goal is to express statements of the type
Problem X is at least as hard as problem Y .

I Use the notion of reductions.

Y is polynomial-time reducible to X (Y ≤P X)

if an arbitrary instance of Y can be solved using a polynomial number
of standard operations, plus a polynomial number of calls to a black box
that solves problem X .

I Y ≤P X implies that X is at least as hard as Y .
I Such reductions are Cook reductions. Karp reductions allow only

one call to the black box that solves X .

Silvio Guimarães Tractability and Intractability 7 de 50

Polynomial-Time Reduction

I The goal is to express statements of the type
Problem X is at least as hard as problem Y .

I Use the notion of reductions.

Y is polynomial-time reducible to X (Y ≤P X)

if an arbitrary instance of Y can be solved using a polynomial number
of standard operations, plus a polynomial number of calls to a black box
that solves problem X .

I Y ≤P X implies that X is at least as hard as Y .
I Such reductions are Cook reductions. Karp reductions allow only

one call to the black box that solves X .

Silvio Guimarães Tractability and Intractability 7 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Usefulness of Reductions

Claim: If Y ≤P X and X can be solved in polynomial time , then Y

can be solved in polynomial time .

Contrapositive: If Y ≤P X and Y cannot be solved in polynomial
time, then X cannot be solved in polynomial time.

Informally: If Y is hard, and we can show that Y reduces to X , then
the hardness spreads to X .

Purpose. Classify problems according to relative difficulty.

I If Y ≤P X and X can be solved in polynomial-time, then Y can
also be solved in polynomial time. Design algorithms

I If Y ≤P X and Y cannot be solved in polynomial-time, then X
cannot be solved in polynomial time. Establish intractability

I If X ≤P Y and Y ≤P X , we use notation X ≡P Y in order to
express the equivalance. Establish equivalence

Silvio Guimarães Tractability and Intractability 8 de 50

Polynomial Transformation

Silvio Guimarães Tractability and Intractability 9 de 50

Problem X polynomial reduces (Cook) to problem Y if arbitrary
instances of problem X can be solved using:

I Polynomial number of standard computational steps, plus
I Polynomial number of calls to oracle that solves problem Y.

Polynomial Transformation

Silvio Guimarães Tractability and Intractability 9 de 50

Problem X polynomial reduces (Cook) to problem Y if arbitrary
instances of problem X can be solved using:

I Polynomial number of standard computational steps, plus
I Polynomial number of calls to oracle that solves problem Y.

Problem X polynomial transforms (Karp) to problem Y if given
any input x to X, we can construct an input y such that x is a yes
instance of X iff y is a yes instance of Y.

Polynomial Transformation

Silvio Guimarães Tractability and Intractability 9 de 50

Problem X polynomial reduces (Cook) to problem Y if arbitrary
instances of problem X can be solved using:

I Polynomial number of standard computational steps, plus
I Polynomial number of calls to oracle that solves problem Y.

Problem X polynomial transforms (Karp) to problem Y if given
any input x to X, we can construct an input y such that x is a yes
instance of X iff y is a yes instance of Y.

Polynomial transformation is polynomial reduction with just one
call to oracle for Y, exactly at the end of the algorithm for X.
Almost all previous reductions were of this form.

Reductions

Silvio Guimarães Tractability and Intractability 10 de 50

Reduction Design a fast algorithm for one computational
problem, using a supposedly fast algorithm for another problem as
a subroutine.

Reductions

Silvio Guimarães Tractability and Intractability 10 de 50

Reduction Design a fast algorithm for one computational
problem, using a supposedly fast algorithm for another problem as
a subroutine.

I Use to compare the two problems.
I Even if we don’t know whether they can be solved in

polynomial time or not,
I We can learn that either they both can or neither can.
I We can also learn that they have a similar structure .

Reductions

Silvio Guimarães Tractability and Intractability 10 de 50

Reduction Design a fast algorithm for one computational
problem, using a supposedly fast algorithm for another problem as
a subroutine.

I Use to compare the two problems.
I Even if we don’t know whether they can be solved in

polynomial time or not,
I We can learn that either they both can or neither can.
I We can also learn that they have a similar structure .

Design a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Cook vs Karp Reductions

Silvio Guimarães Tractability and Intractability 11 de 50

Palg ≤P Poracle

Cook Reduction Design any fast algorithm for Palg using a
supposed fast algorithm for Poracle as a subroutine

Karp Reduction The algorithm for Palg calls that for Poracle only
once: Yes⇒Yes & No⇒No

Cook vs Karp Reductions

Silvio Guimarães Tractability and Intractability 11 de 50

Palg ≤P Poracle

Cook Reduction Design any fast algorithm for Palg using a
supposed fast algorithm for Poracle as a subroutine

Karp Reduction The algorithm for Palg calls that for Poracle only
once: Yes⇒Yes & No⇒No

Cook vs Karp Reductions

Silvio Guimarães Tractability and Intractability 11 de 50

Palg ≤P Poracle

Cook Reduction Design any fast algorithm for Palg using a
supposed fast algorithm for Poracle as a subroutine

Karp Reduction The algorithm for Palg calls that for Poracle only
once: Yes⇒Yes & No⇒No

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Cook vs Karp Reductions

Silvio Guimarães Tractability and Intractability 11 de 50

Palg ≤P Poracle

Cook Reduction Design any fast algorithm for Palg using a
supposed fast algorithm for Poracle as a subroutine

Karp Reduction The algorithm for Palg calls that for Poracle only
once: Yes⇒Yes & No⇒No

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Is there a fast algorithm for Palg?

Cook vs Karp Reductions

Silvio Guimarães Tractability and Intractability 11 de 50

Palg ≤P Poracle

Cook Reduction Design any fast algorithm for Palg using a
supposed fast algorithm for Poracle as a subroutine

Karp Reduction The algorithm for Palg calls that for Poracle only
once: Yes⇒Yes & No⇒No

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Is there a fast algorithm for Palg?
Is there a fast algorithm for Poracle?

Reductions

Silvio Guimarães Tractability and Intractability 12 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

If there is a fast algorithm for
Palg?

If there is not a fast algorithm
for Palg?

If there is a fast algorithm for
Poracle?

If there is not a fast algorithm
for Poracle?

Reductions

Silvio Guimarães Tractability and Intractability 12 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

If there is a fast algorithm for
Palg?

If there is not a fast algorithm
for Palg?

If there is a fast algorithm for
Poracle?

then there is a fast
algorithm for Palg

If there is not a fast algorithm
for Poracle?

Reductions

Silvio Guimarães Tractability and Intractability 12 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

If there is a fast algorithm for
Palg?

If there is not a fast algorithm
for Palg?

then there is not a fast
algorithm for Poracle

If there is a fast algorithm for
Poracle?

then there is a fast
algorithm for Palg

If there is not a fast algorithm
for Poracle?

Reductions

Silvio Guimarães Tractability and Intractability 12 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

If there is a fast algorithm for
Palg?

???

If there is not a fast algorithm
for Palg?

then there is not a fast
algorithm for Poracle

If there is a fast algorithm for
Poracle?

then there is a fast
algorithm for Palg

If there is not a fast algorithm
for Poracle?

Reductions

Silvio Guimarães Tractability and Intractability 12 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

If there is a fast algorithm for
Palg?

???

If there is not a fast algorithm
for Palg?

then there is not a fast
algorithm for Poracle

If there is a fast algorithm for
Poracle?

then there is a fast
algorithm for Palg

If there is not a fast algorithm
for Poracle?

???

Reductions

Silvio Guimarães Tractability and Intractability 13 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Reductions

Silvio Guimarães Tractability and Intractability 13 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Palg is at least as easy as Poracle

(Modulo polynomial terms.)

Reductions

Silvio Guimarães Tractability and Intractability 13 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Palg is at least as easy as Poracle

(Modulo polynomial terms.)

Poracle is at least as hard as Palg

(Modulo polynomial terms.)

Reductions

Silvio Guimarães Tractability and Intractability 13 de 50

We give a fast algorithm for Palg using a supposed fast algorithm
for Poracle as a subroutine.

Palg is at least as easy as Poracle

(Modulo polynomial terms.)

Poracle is at least as hard as Palg

(Modulo polynomial terms.)

The problems have a similar underling structure and it is used to
design new Algorithms

Reduction Strategies

I Simple equivalence.
I Special case to general case.
I Encoding with gadgets.

Silvio Guimarães Tractability and Intractability 14 de 50

Optimization versus Decision Problems

I So far, we have developed algorithms that solve optimization
problems.

I Compute the largest flow.
I Find the closest pair of points.
I Find the schedule with the least completion time.

I Now, we will focus on decision versions of problems, e.g..,

Is there a flow with value at least k , for a given value of k?

Silvio Guimarães Tractability and Intractability 15 de 50

Optimization versus Decision Problems

I So far, we have developed algorithms that solve optimization
problems.

I Compute the largest flow.
I Find the closest pair of points.
I Find the schedule with the least completion time.

I Now, we will focus on decision versions of problems, e.g..,

Is there a flow with value at least k , for a given value of k?

Silvio Guimarães Tractability and Intractability 15 de 50

Independent sets

Silvio Guimarães Tractability and Intractability 16 de 50

Let G = (V ,E) be an undirected connected graph.

I A subset S ⊆ V is an independent set if ∀u, v ∈ S there
exist an edge (u, v) ∈ E .

I Given G and an integer k , is there a subset of vertices S ⊆ V
such that |S | ≥ k , and for each edge at most one of its
endpoints is in S?

a

b

cd

e

f a

cd

be

f

Independent sets

Silvio Guimarães Tractability and Intractability 16 de 50

Let G = (V ,E) be an undirected connected graph.

I A subset S ⊆ V is an independent set if ∀u, v ∈ S there
exist an edge (u, v) ∈ E .

I Given G and an integer k , is there a subset of vertices S ⊆ V
such that |S | ≥ k , and for each edge at most one of its
endpoints is in S?

a

b

cd

e

f a

cd

be

f

Is there an independent set of size ≥ 3? Yes.

Independent sets

Silvio Guimarães Tractability and Intractability 16 de 50

Let G = (V ,E) be an undirected connected graph.

I A subset S ⊆ V is an independent set if ∀u, v ∈ S there
exist an edge (u, v) ∈ E .

I Given G and an integer k , is there a subset of vertices S ⊆ V
such that |S | ≥ k , and for each edge at most one of its
endpoints is in S?

a

b

cd

e

f a

cd

be

f

Is there an independent set of size ≥ 4? No.

Vertex cover

Silvio Guimarães Tractability and Intractability 17 de 50

Let G = (V ,E) be an undirected connected graph.

I A subset S ⊆ V is an vertex cover if ∀(u, v) ∈ E , either
u ∈ S or v ∈ S .

I Given a graph G and an integer k , is there a subset of vertices
S ⊆ V such that |S | ≤ k , and for each edge, at least one of
its endpoints is in S?

a

b

cd

e

f a

cd

be

f

Vertex cover

Silvio Guimarães Tractability and Intractability 17 de 50

Let G = (V ,E) be an undirected connected graph.

I A subset S ⊆ V is an vertex cover if ∀(u, v) ∈ E , either
u ∈ S or v ∈ S .

I Given a graph G and an integer k , is there a subset of vertices
S ⊆ V such that |S | ≤ k , and for each edge, at least one of
its endpoints is in S?

a

b

cd

e

f a

cd

be

f

Is there a vertex cover of size ≤ 3? Yes.

Vertex cover

Silvio Guimarães Tractability and Intractability 17 de 50

Let G = (V ,E) be an undirected connected graph.

I A subset S ⊆ V is an vertex cover if ∀(u, v) ∈ E , either
u ∈ S or v ∈ S .

I Given a graph G and an integer k , is there a subset of vertices
S ⊆ V such that |S | ≤ k , and for each edge, at least one of
its endpoints is in S?

a

b

cd

e

f a

cd

be

f

Is there a vertex cover of size ≤ 2? No.

Vertex cover

Silvio Guimarães Tractability and Intractability 18 de 50

Let G = (V ,E) be an undirected connected graph, and S a vertex
cover of G

As S is a vertex cover of G , then V-S is an independent set.

a

cd

be

f a

cd

be

f

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 19 de 50

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if no
two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain an in-
dependent set of size

at least k?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a vertex
cover of size

at most k?

I Demonstrate simple equivalence between these two problems.
I S is an independent set in G iff V − S is a vertex cover in G .
I Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent

Set.

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 19 de 50

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if no
two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain an in-
dependent set of size

at least k?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a vertex
cover of size

at most k?

I Demonstrate simple equivalence between these two problems.
I S is an independent set in G iff V − S is a vertex cover in G .
I Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent

Set.

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 19 de 50

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if no
two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain an in-
dependent set of size
at least k?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a vertex
cover of size at most k?

I Demonstrate simple equivalence between these two problems.
I S is an independent set in G iff V − S is a vertex cover in G .
I Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent

Set.

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 19 de 50

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if no
two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain an in-
dependent set of size
at least k?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a vertex
cover of size at most k?

I Demonstrate simple equivalence between these two problems.

I S is an independent set in G iff V − S is a vertex cover in G .
I Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent

Set.

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 19 de 50

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if no
two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain an in-
dependent set of size
at least k?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a vertex
cover of size at most k?

I Demonstrate simple equivalence between these two problems.
I S is an independent set in G iff V − S is a vertex cover in G .

I Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent
Set.

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 19 de 50

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if no
two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain an in-
dependent set of size
at least k?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a vertex
cover of size at most k?

I Demonstrate simple equivalence between these two problems.
I S is an independent set in G iff V − S is a vertex cover in G .
I Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent

Set.

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 20 de 50

Independent Set ≡P Vertex Cover

We show S is an independent set iff V - S is a vertex cover

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 20 de 50

Independent Set ≡P Vertex Cover

We show S is an independent set iff V - S is a vertex cover

I Let S be any independent set.
I Consider an arbitrary edge (u, v).
I S independent ⇒ u 6∈ S or v 6∈ S ⇒ u ∈ V − S or v ∈ V − S .
I Thus, V - S covers (u, v).

Independent Set and Vertex Cover

Silvio Guimarães Tractability and Intractability 20 de 50

Independent Set ≡P Vertex Cover

We show S is an independent set iff V - S is a vertex cover

I Let S be any independent set.
I Consider an arbitrary edge (u, v).
I S independent ⇒ u 6∈ S or v 6∈ S ⇒ u ∈ V − S or v ∈ V − S .
I Thus, V - S covers (u, v).

I Let V - S be any vertex cover.
I Consider two nodes u ∈ S and v ∈ S .
I Observe that (u, v) 6∈ E since V - S is a vertex cover.
I Thus, no two nodes in S are joined by an edge ⇒ S

independent set

Set Cover

Silvio Guimarães Tractability and Intractability 21 de 50

Given a set U of elements, a collection S = {S1,S2, · · · , Sm} of
subsets of U.

I A subset C ⊆ S is a set cover if the union of elements of C
is equal to U.

I Given U, S , and an integer k , does there exist a collection of
≤ k of these sets whose union is equal to U?

Set Cover

Silvio Guimarães Tractability and Intractability 21 de 50

Given a set U of elements, a collection S = {S1,S2, · · · , Sm} of
subsets of U.

I A subset C ⊆ S is a set cover if the union of elements of C
is equal to U.

I Given U, S , and an integer k , does there exist a collection of
≤ k of these sets whose union is equal to U?

Sample application:
I m available pieces of software
I Set U of n capabilities that we would like our system to have
I The i th piece of software provides the set Si ⊆ U of

capabilities.
I The goal is to achieve all n capabilities using

fewest pieces of software .

Set Cover

Silvio Guimarães Tractability and Intractability 21 de 50

Given a set U of elements, a collection S = {S1,S2, · · · , Sm} of
subsets of U.

I A subset C ⊆ S is a set cover if the union of elements of C
is equal to U.

I Given U, S , and an integer k , does there exist a collection of
≤ k of these sets whose union is equal to U?

Sample application:
I U = {1, 2, 3, 4, 5, 6, 7} and k = 2

S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

Set Cover

Silvio Guimarães Tractability and Intractability 21 de 50

Given a set U of elements, a collection S = {S1,S2, · · · , Sm} of
subsets of U.

I A subset C ⊆ S is a set cover if the union of elements of C
is equal to U.

I Given U, S , and an integer k , does there exist a collection of
≤ k of these sets whose union is equal to U?

Sample application:
I U = {1, 2, 3, 4, 5, 6, 7} and k = 2

S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

Vertex Cover and Set Cover

Silvio Guimarães Tractability and Intractability 22 de 50

I Set cover is a packing problem: pack as many vertices as possible,
subject to constraints (the edges).

I Vertex Cover is a covering problem: cover all edges in the graph
with as few vertices as possible.

I There are more general covering problems.

Set Cover

INSTANCE A set U of n el-
ements, a collection
S1, S2, . . . , Sm of sub-
sets of U, and an inte-
ger k.

QUESTION Is there a collection of
≤ k sets in the collec-
tion whose union is U?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a
vertex cover of size

at most k?

Vertex Cover and Set Cover

Silvio Guimarães Tractability and Intractability 22 de 50

I Set cover is a packing problem: pack as many vertices as possible,
subject to constraints (the edges).

I Vertex Cover is a covering problem: cover all edges in the graph
with as few vertices as possible.

I There are more general covering problems.

Set Cover

INSTANCE A set U of n el-
ements, a collection
S1, S2, . . . , Sm of sub-
sets of U, and an inte-
ger k.

QUESTION Is there a collection of
≤ k sets in the collec-
tion whose union is U?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a
vertex cover of size

at most k?

Vertex Cover and Set Cover

Silvio Guimarães Tractability and Intractability 22 de 50

I Set cover is a packing problem: pack as many vertices as possible,
subject to constraints (the edges).

I Vertex Cover is a covering problem: cover all edges in the graph
with as few vertices as possible.

I There are more general covering problems.

Set Cover

INSTANCE A set U of n el-
ements, a collection
S1, S2, . . . , Sm of sub-
sets of U, and an inte-
ger k.

QUESTION Is there a collection of
≤ k sets in the collec-
tion whose union is U?

Vertex cover

INSTANCE Undirected graph G and
an integer k

QUESTION Does G contain a
vertex cover of size
at most k?

Reducing Vertex Cover to Set Cover

Silvio Guimarães Tractability and Intractability 23 de 50

Vertex Cover ≤P Set Cover

I Input to Vertex Cover is an undirected graph G = (V ,E)
with n vertices.

I Create an instance of Set Cover in which
I k = k , U = E , Sv = {e ∈ E : e incident to v}

I U can be covered with fewer than k subsets iff G has a
vertex cover with at most k nodes.

Reducing Vertex Cover to Set Cover

Silvio Guimarães Tractability and Intractability 23 de 50

Vertex Cover ≤P Set Cover

I Input to Vertex Cover is an undirected graph G = (V ,E)
with n vertices.

I Create an instance of Set Cover in which
I k = k , U = E , Sv = {e ∈ E : e incident to v}

I U can be covered with fewer than k subsets iff G has a
vertex cover with at most k nodes.

Reducing Vertex Cover to Set Cover

Silvio Guimarães Tractability and Intractability 23 de 50

Vertex Cover ≤P Set Cover

I Input to Vertex Cover is an undirected graph G = (V ,E)
with n vertices.

I Create an instance of Set Cover in which
I k = k , U = E , Sv = {e ∈ E : e incident to v}

I U can be covered with fewer than k subsets iff G has a
vertex cover with at most k nodes.

Reducing Vertex Cover to Set Cover

Silvio Guimarães Tractability and Intractability 23 de 50

Vertex Cover ≤P Set Cover

I Input to Vertex Cover is an undirected graph G = (V ,E)
with n vertices.

I Create an instance of Set Cover in which
I k = k , U = E , Sv = {e ∈ E : e incident to v}

I U can be covered with fewer than k subsets iff G has a
vertex cover with at most k nodes.

d

ba

cf

e

e3e2 e4e7

e1

e6

e5

Reducing Vertex Cover to Set Cover

Silvio Guimarães Tractability and Intractability 23 de 50

Vertex Cover ≤P Set Cover

I Input to Vertex Cover is an undirected graph G = (V ,E)
with n vertices.

I Create an instance of Set Cover in which
I k = k , U = E , Sv = {e ∈ E : e incident to v}

I U can be covered with fewer than k subsets iff G has a
vertex cover with at most k nodes.

d

ba

cf

e

e3e2 e4e7

e1

e6

e5

U = {1, 2, 3, 4, 5, 6, 7} and k = 2

S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

Boolean Satisfiability

I Abstract problems formulated in Boolean notation.
I Often used to specify problems, e.g., in AI.

I We are given a set X = {x1, x2, . . . , xn} of n Boolean variables.
I Each variable can take the value 0 or 1.
I A term is a variable xi or its negation xi .
I A clause of length l is a disjunction of l distinct terms

t1 ∨ t2 ∨ · · · tl .
I A truth assignment for X is a function ν : X → {0, 1}.
I An assignment satisfies a clause C if it causes C to evaluate to 1

under the rules of Boolean logic.
I An assignment satisfies a collection of clauses C1,C2, . . .Ck if it

causes C1 ∧ C2 ∧ · · ·Ck to evaluate to 1.
I ν is a satisfying assignment with respect to C1,C2, . . .Ck .
I set of clauses C1,C2, . . .Ck is satisfiable.

Silvio Guimarães Tractability and Intractability 24 de 50

Boolean Satisfiability

I Abstract problems formulated in Boolean notation.
I Often used to specify problems, e.g., in AI.

I We are given a set X = {x1, x2, . . . , xn} of n Boolean variables.
I Each variable can take the value 0 or 1.
I A term is a variable xi or its negation xi .
I A clause of length l is a disjunction of l distinct terms

t1 ∨ t2 ∨ · · · tl .
I A truth assignment for X is a function ν : X → {0, 1}.
I An assignment satisfies a clause C if it causes C to evaluate to 1

under the rules of Boolean logic.
I An assignment satisfies a collection of clauses C1,C2, . . .Ck if it

causes C1 ∧ C2 ∧ · · ·Ck to evaluate to 1.
I ν is a satisfying assignment with respect to C1,C2, . . .Ck .
I set of clauses C1,C2, . . .Ck is satisfiable.

Silvio Guimarães Tractability and Intractability 24 de 50

SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE A set of clauses C1,C2, . . .Ck over a set X = {x1, x2, . . . xn} of
n variables.

QUESTION Is there a satisfying truth assignment for X with respect to C?

3-Satisfiability Problem (3-SAT)

INSTANCE A set of clauses C1,C2, . . .Ck each of length 3 over a set X =

{x1, x2, . . . xn} of n variables.

QUESTION Is there a satisfying truth assignment for X with respect to C?

I SAT and 3-SAT are fundamental combinatorial search problems.
I We have to make n independent decisions (the assignments for each variable)

while satisfying a set of constraints.
I Satisfying each constraint in isolation is easy, but we have to make our

decisions so that all constraints are satisfied simultaneously.

Silvio Guimarães Tractability and Intractability 25 de 50

SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE A set of clauses C1,C2, . . .Ck over a set X = {x1, x2, . . . xn} of
n variables.

QUESTION Is there a satisfying truth assignment for X with respect to C?

3-Satisfiability Problem (3-SAT)

INSTANCE A set of clauses C1,C2, . . .Ck each of length 3 over a set X =

{x1, x2, . . . xn} of n variables.

QUESTION Is there a satisfying truth assignment for X with respect to C?

I SAT and 3-SAT are fundamental combinatorial search problems.
I We have to make n independent decisions (the assignments for each variable)

while satisfying a set of constraints.
I Satisfying each constraint in isolation is easy, but we have to make our

decisions so that all constraints are satisfied simultaneously.

Silvio Guimarães Tractability and Intractability 25 de 50

SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE A set of clauses C1,C2, . . .Ck over a set X = {x1, x2, . . . xn} of
n variables.

QUESTION Is there a satisfying truth assignment for X with respect to C?

3-Satisfiability Problem (3-SAT)

INSTANCE A set of clauses C1,C2, . . .Ck each of length 3 over a set X =

{x1, x2, . . . xn} of n variables.

QUESTION Is there a satisfying truth assignment for X with respect to C?

I SAT and 3-SAT are fundamental combinatorial search problems.
I We have to make n independent decisions (the assignments for each variable)

while satisfying a set of constraints.
I Satisfying each constraint in isolation is easy, but we have to make our

decisions so that all constraints are satisfied simultaneously.

Silvio Guimarães Tractability and Intractability 25 de 50

3-SAT and Independent Set

I We want to prove 3-SAT ≤P Independent Set .

I Two ways to think about 3-SAT:
1. Make an independent 0/1 decision on each variable and succeed if

we achieve one of three ways in which to satisfy each clause.
2. Choose (at least) one term from each clause . Find a truth

assignment that causes each chosen term to evaluate to 1. Ensure
that no two terms selected conflict, i.e., select xi and xi .

Silvio Guimarães Tractability and Intractability 26 de 50

3-SAT and Independent Set

I We want to prove 3-SAT ≤P Independent Set .
I Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if
we achieve one of three ways in which to satisfy each clause.

2. Choose (at least) one term from each clause . Find a truth
assignment that causes each chosen term to evaluate to 1. Ensure
that no two terms selected conflict, i.e., select xi and xi .

Silvio Guimarães Tractability and Intractability 26 de 50

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 27 de 50

3-SAT ≤P Independent set

Given an instance Φ of 3-SAT, we construct an instance (G , k) of
independent set that has an independent set of size k iff Φ is
satisfiable.

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 27 de 50

3-SAT ≤P Independent set

Given an instance Φ of 3-SAT, we construct an instance (G , k) of
independent set that has an independent set of size k iff Φ is
satisfiable.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 27 de 50

3-SAT ≤P Independent set

Given an instance Φ of 3-SAT, we construct an instance (G , k) of
independent set that has an independent set of size k iff Φ is
satisfiable.
Construction.

I G contains 3 nodes for each clause (k=3), one for each literal.
I Connect 3 literals in a clause in a triangle.
I Connect literal to each of its negations.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 27 de 50

3-SAT ≤P Independent set

Given an instance Φ of 3-SAT, we construct an instance (G , k) of
independent set that has an independent set of size k iff Φ is
satisfiable.
Construction.

I G contains 3 nodes for each clause (k=3), one for each literal.
I Connect 3 literals in a clause in a triangle.
I Connect literal to each of its negations.

x1

x2 x3

x2

x1 x3

x1

x2 x4

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 27 de 50

3-SAT ≤P Independent set

G contains independent set of size k = |Φ| iff Φ is satisfiable.

x1

x2 x3

x2

x1 x3

x1

x2 x4

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 27 de 50

3-SAT ≤P Independent set

G contains independent set of size k = |Φ| iff Φ is satisfiable.

⇒ Let S be independent set of size k .
I S must contain exactly one vertex in each triangle.
I Set these literals to true.
I Truth assignment is consistent and all clauses are satisfied.
⇐ Given satisfying assignment , select one true literal from each
triangle. This is an independent set of size k.

x1

x2 x3

x2

x1 x3

x1

x2 x4

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 28 de 50

I We are given an instance of 3-SAT with k clauses of length
three over n variables .

I Construct a graph G = (V ,E) with 3k nodes.
I For each clause Ci , 1 ≤ i ≤ k , add a triangle of three nodes

vi1, vi2, vi3 and three edges to G .
I Label each node vij , 1 ≤ j ≤ 3 with the j-th term in Ci .
I Add an edge between each pair of nodes whose labels

correspond to terms that conflict.

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 29 de 50

I Claim: 3-SAT instance is satisfiable iff G has an independent set
of size at least k .

I Satisfiable assignment → independent set of size ≥ k

I Independent set of size ≥ k → satisfiable assignment

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 29 de 50

I Claim: 3-SAT instance is satisfiable iff G has an independent set
of size at least k .

I Satisfiable assignment → independent set of size ≥ k

I Independent set of size ≥ k → satisfiable assignment

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 29 de 50

I Claim: 3-SAT instance is satisfiable iff G has an independent set
of size at least k .

I Satisfiable assignment → independent set of size ≥ k Each
triangle in G has at least one node whose label evaluates to 1.
These nodes form an independent set of size k . Why?

I Independent set of size ≥ k → satisfiable assignment

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 29 de 50

I Claim: 3-SAT instance is satisfiable iff G has an independent set
of size at least k .

I Satisfiable assignment → independent set of size ≥ k Each
triangle in G has at least one node whose label evaluates to 1.
These nodes form an independent set of size k . Why?

I Independent set of size ≥ k → satisfiable assignment

Proving 3-SAT ≤P Independent Set

Silvio Guimarães Tractability and Intractability 29 de 50

I Claim: 3-SAT instance is satisfiable iff G has an independent set
of size at least k .

I Satisfiable assignment → independent set of size ≥ k Each
triangle in G has at least one node whose label evaluates to 1.
These nodes form an independent set of size k . Why?

I Independent set of size ≥ k → satisfiable assignment the size of
this set is k . How do we construct a satisfying truth assignment
from the nodes in the independent set?

Transitivity of Reductions

Silvio Guimarães Tractability and Intractability 30 de 50

Basic reduction strategies.
I Simple equivalence: Independent set ≡P Vertex

cover.
I Special case to general case: Vertex cover ≤P Set

cover.
I Encoding with gadgets: 3-SAT ≤P Independent set.

Transitivity of Reductions

Silvio Guimarães Tractability and Intractability 30 de 50

Basic reduction strategies.
I Simple equivalence: Independent set ≡P Vertex

cover.
I Special case to general case: Vertex cover ≤P Set

cover.
I Encoding with gadgets: 3-SAT ≤P Independent set.

If Z ≤P Y and Y ≤P X, then Z ≤P X .

Transitivity of Reductions

Silvio Guimarães Tractability and Intractability 30 de 50

Basic reduction strategies.
I Simple equivalence: Independent set ≡P Vertex

cover.
I Special case to general case: Vertex cover ≤P Set

cover.
I Encoding with gadgets: 3-SAT ≤P Independent set.

If Z ≤P Y and Y ≤P X, then Z ≤P X .

3-SAT ≤P Independent Set ≤P Vertex
Cover ≤P Set Cover

Algorithm design and analysis

— NP —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

Finding vs. Certifying

I Is it easy to check if a given set of vertices in an undirected graph
forms an independent set of size at least k?

I Is it easy to check if a particular truth assignment satisfies a set
of clauses?

I We draw a contrast between finding a solution and checking a
solution (in polynomial time).

We have not been able to develop efficient algorithms to solve many
decision problems, let us turn our attention to whether we can check if
a proposed solution is correct.

Silvio Guimarães Tractability and Intractability 32 de 50

Finding vs. Certifying

I Is it easy to check if a given set of vertices in an undirected graph
forms an independent set of size at least k?

I Is it easy to check if a particular truth assignment satisfies a set
of clauses?

I We draw a contrast between finding a solution and checking a
solution (in polynomial time).

We have not been able to develop efficient algorithms to solve many
decision problems, let us turn our attention to whether we can check if
a proposed solution is correct.

Silvio Guimarães Tractability and Intractability 32 de 50

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s
of length |s|.

I Identify a decision problem X with the set of strings for which the
answer is yes ,

e.g., PRIMES = {2, 3, 5, 7, 11, . . .}.
I An algorithm A for a decision problem receives an input string s

and returns A(s) ∈ {yes, no}.
I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function
p(·) such that for every input string s, A terminates on s in at
most O(p(|s|)) steps, e.g., there is an algorithm such that
p(|s|) = |s|8 for PRIMES

I P : set of problems X for which there is a polynomial time
algorithm.

Silvio Guimarães Tractability and Intractability 33 de 50

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s
of length |s|.

I Identify a decision problem X with the set of strings for which the
answer is yes , e.g., PRIMES = {2, 3, 5, 7, 11, . . .}.

I An algorithm A for a decision problem receives an input string s
and returns A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function
p(·) such that for every input string s, A terminates on s in at
most O(p(|s|)) steps, e.g., there is an algorithm such that
p(|s|) = |s|8 for PRIMES

I P : set of problems X for which there is a polynomial time
algorithm.

Silvio Guimarães Tractability and Intractability 33 de 50

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s
of length |s|.

I Identify a decision problem X with the set of strings for which the
answer is yes , e.g., PRIMES = {2, 3, 5, 7, 11, . . .}.

I An algorithm A for a decision problem receives an input string s
and returns A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function
p(·) such that for every input string s, A terminates on s in at
most O(p(|s|)) steps, e.g., there is an algorithm such that
p(|s|) = |s|8 for PRIMES

I P : set of problems X for which there is a polynomial time
algorithm.

Silvio Guimarães Tractability and Intractability 33 de 50

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s
of length |s|.

I Identify a decision problem X with the set of strings for which the
answer is yes , e.g., PRIMES = {2, 3, 5, 7, 11, . . .}.

I An algorithm A for a decision problem receives an input string s
and returns A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function
p(·) such that for every input string s, A terminates on s in at
most O(p(|s|)) steps,

e.g., there is an algorithm such that
p(|s|) = |s|8 for PRIMES

I P : set of problems X for which there is a polynomial time
algorithm.

Silvio Guimarães Tractability and Intractability 33 de 50

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s
of length |s|.

I Identify a decision problem X with the set of strings for which the
answer is yes , e.g., PRIMES = {2, 3, 5, 7, 11, . . .}.

I An algorithm A for a decision problem receives an input string s
and returns A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function
p(·) such that for every input string s, A terminates on s in at
most O(p(|s|)) steps, e.g., there is an algorithm such that
p(|s|) = |s|8 for PRIMES

I P : set of problems X for which there is a polynomial time
algorithm.

Silvio Guimarães Tractability and Intractability 33 de 50

Efficient Certification

I A checking algorithm for a decision problem X has a different
structure from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate
certificate string t that contains evidence that s ∈ X .

I An algorithm B is an efficient certifier for a problem X if
1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have

s ∈ X iff there exists a string t such that |t| ≤ p(|s|) and
B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and
check in polynomial time whether t is a correct proof.

Certifier does not care about how to find these proofs.

Silvio Guimarães Tractability and Intractability 34 de 50

Efficient Certification

I A checking algorithm for a decision problem X has a different
structure from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate
certificate string t that contains evidence that s ∈ X .

I An algorithm B is an efficient certifier for a problem X if
1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have

s ∈ X iff there exists a string t such that |t| ≤ p(|s|) and
B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and
check in polynomial time whether t is a correct proof.

Certifier does not care about how to find these proofs.

Silvio Guimarães Tractability and Intractability 34 de 50

Efficient Certification

I A checking algorithm for a decision problem X has a different
structure from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate
certificate string t that contains evidence that s ∈ X .

I An algorithm B is an efficient certifier for a problem X if
1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have

s ∈ X iff there exists a string t such that |t| ≤ p(|s|) and
B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and
check in polynomial time whether t is a correct proof.

Certifier does not care about how to find these proofs.

Silvio Guimarães Tractability and Intractability 34 de 50

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP
Independent Set ∈ NP
Set Cover ∈ NP

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP

Independent Set ∈ NP
Set Cover ∈ NP

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP

Independent Set ∈ NP
Set Cover ∈ NP

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Certificate x1 = 1, x2 = 1, x3 = 0 and x4 = 1

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP
Set Cover ∈ NP

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Certificate x1 = 1, x2 = 1, x3 = 0 and x4 = 1

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP

Set Cover ∈ NP

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP

Set Cover ∈ NP

a

cd

be

f

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP t is a set of at least k vertices; B
checks that no pair of these vertices are connected by an edge.

Set Cover ∈ NP

a

cd

be

f

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP t is a set of at least k vertices; B
checks that no pair of these vertices are connected by an edge.

Set Cover ∈ NP

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP t is a set of at least k vertices; B
checks that no pair of these vertices are connected by an edge.

Set Cover ∈ NP

I U = {1, 2, 3, 4, 5, 6, 7} and k = 2

S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

NP

Silvio Guimarães Tractability and Intractability 35 de 50

NP is the set of all problems for which there exists an
efficient certifier .

3-SAT ∈ NP t is a truth assignment; B evaluates the clauses
with respect to the assignment.

Independent Set ∈ NP t is a set of at least k vertices; B
checks that no pair of these vertices are connected by an edge.

Set Cover ∈ NP t is a list of k sets from the collection; B
checks if their union is U.

I U = {1, 2, 3, 4, 5, 6, 7} and k = 2

S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP
I Is P = NP or is NP − P 6= ∅.

I NP ⊆ EXP .

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP

I Is P = NP or is NP − P 6= ∅.

I NP ⊆ EXP .

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP If X ∈ P , then there is a polynomial time algorithm A
that solves X . B ignores t and returns A(s). Why is B an efficient
certifier?

I Is P = NP or is NP − P 6= ∅.

I NP ⊆ EXP .

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP If X ∈ P , then there is a polynomial time algorithm A
that solves X . B ignores t and returns A(s). Why is B an efficient
certifier?

I Is P = NP or is NP − P 6= ∅.

I NP ⊆ EXP .

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP If X ∈ P , then there is a polynomial time algorithm A
that solves X . B ignores t and returns A(s). Why is B an efficient
certifier?

I Is P = NP or is NP − P 6= ∅.

One of the major unsolved problems in computer science .

I NP ⊆ EXP .

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP If X ∈ P , then there is a polynomial time algorithm A
that solves X . B ignores t and returns A(s). Why is B an efficient
certifier?

I Is P = NP or is NP − P 6= ∅.

One of the major unsolved problems in computer science .

I NP ⊆ EXP .

P vs. NP

Silvio Guimarães Tractability and Intractability 36 de 50

P Decision problems for which there is a poly-time algorithm

EXP Decision problems for which there is an exponential-time algorithm

NP Decision problems for which there is a poly-time certifier

I P ⊆ NP If X ∈ P , then there is a polynomial time algorithm A
that solves X . B ignores t and returns A(s). Why is B an efficient
certifier?

I Is P = NP or is NP − P 6= ∅.

One of the major unsolved problems in computer science .

I NP ⊆ EXP . Consider any problem X in NP.
I By definition, there exists a poly-time certifier C(s, t) for X.
I To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).
I Return yes, if C(s, t) returns yes for any of these.

P vs. NP

Silvio Guimarães Tractability and Intractability 37 de 50

A decision problem belongs to the class P if there is a solution
algorithm with a running time that is polynomial in the input size

P vs. NP

Silvio Guimarães Tractability and Intractability 37 de 50

A decision problem belongs to the class P if there is a solution
algorithm with a running time that is polynomial in the input size

A decision problem belongs to the class NP if we can check
whether a given solution leads to ‘yes’ can be done in polynomial
time with respect to the size of (x,y).

P vs. NP

Silvio Guimarães Tractability and Intractability 37 de 50

A decision problem belongs to the class P if there is a solution
algorithm with a running time that is polynomial in the input size

Class P – Class of decision problems, for which there exists a
Deterministic Turing Machine that can solve any instance in
polynomial time.

A decision problem belongs to the class NP if we can check
whether a given solution leads to ‘yes’ can be done in polynomial
time with respect to the size of (x,y).

P vs. NP

Silvio Guimarães Tractability and Intractability 37 de 50

A decision problem belongs to the class P if there is a solution
algorithm with a running time that is polynomial in the input size

Class P – Class of decision problems, for which there exists a
Deterministic Turing Machine that can solve any instance in
polynomial time.

A decision problem belongs to the class NP if we can check
whether a given solution leads to ‘yes’ can be done in polynomial
time with respect to the size of (x,y).

Class NP – Class of decision problems, for which there exists a
Non- Deterministic Turing Machine that can solve any yes
instance in polynomial time. The machine guesses a yes solution
and then verifies that it is a yes solution

P vs. NP

Never tell to an expert in Computational Complexity – tractability –
that you think that NP stands for Non Polynomial

NP stands for Non-deterministic Polynomial

Silvio Guimarães Tractability and Intractability 38 de 50

P vs. NP

Silvio Guimarães Tractability and Intractability 39 de 50

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

P vs. NP

Silvio Guimarães Tractability and Intractability 39 de 50

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

P vs. NP

Silvio Guimarães Tractability and Intractability 39 de 50

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

P vs. NP

Silvio Guimarães Tractability and Intractability 39 de 50

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

If yes Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, · · · .

If no No efficient algorithms possible for 3-COLOR, TSP, SAT, · · · .

P vs. NP

Silvio Guimarães Tractability and Intractability 39 de 50

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

If yes Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, · · · .

If no No efficient algorithms possible for 3-COLOR, TSP, SAT, · · · .

Consensus opinion on P = NP? Probably no .

P vs. NP

Silvio Guimarães Tractability and Intractability 40 de 50

P vs. NP

12

Futurama: P = NP?

Copyright © 2000, Twentieth Century Fox

Silvio Guimarães Tractability and Intractability 41 de 50

Algorithm design and analysis

— NP-Complete —

Silvio Guimarães

Graduate Program in Informatics – PPGINF
Image and Multimedia Data Science Laboratory – IMScience
Pontifical Catholic University of Minas Gerais – PUC Minas

Feb 2023

NP-Complete Problems

I What are the hardest problems in NP?

I A problem X is NP-Complete if
1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

I Suppose X is NP-Complete. Then X can be solved in
polynomial-time iff P = NP .

Corollary: If there is any problem in NP that cannot be solved in
polynomial time, then no NP-Complete problem can be solved in
polynomial time.

I Are there any NP-Complete problems?
1. Perhaps there are two problems X1 and X2 in NP such that there

is no problem X ∈ NP where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each

strictly harder than the previous one.

Silvio Guimarães Tractability and Intractability 43 de 50

NP-Complete Problems

I What are the hardest problems in NP?
I A problem X is NP-Complete if

1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

I Suppose X is NP-Complete. Then X can be solved in
polynomial-time iff P = NP .

Corollary: If there is any problem in NP that cannot be solved in
polynomial time, then no NP-Complete problem can be solved in
polynomial time.

I Are there any NP-Complete problems?
1. Perhaps there are two problems X1 and X2 in NP such that there

is no problem X ∈ NP where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each

strictly harder than the previous one.

Silvio Guimarães Tractability and Intractability 43 de 50

NP-Complete Problems

I What are the hardest problems in NP?
I A problem X is NP-Complete if

1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

I Suppose X is NP-Complete. Then X can be solved in
polynomial-time iff P = NP .

Corollary: If there is any problem in NP that cannot be solved in
polynomial time, then no NP-Complete problem can be solved in
polynomial time.

I Are there any NP-Complete problems?
1. Perhaps there are two problems X1 and X2 in NP such that there

is no problem X ∈ NP where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each

strictly harder than the previous one.

Silvio Guimarães Tractability and Intractability 43 de 50

NP-Complete Problems

I What are the hardest problems in NP?
I A problem X is NP-Complete if

1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

I Suppose X is NP-Complete. Then X can be solved in
polynomial-time iff P = NP .

Corollary: If there is any problem in NP that cannot be solved in
polynomial time, then no NP-Complete problem can be solved in
polynomial time.

I Are there any NP-Complete problems?
1. Perhaps there are two problems X1 and X2 in NP such that there

is no problem X ∈ NP where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each

strictly harder than the previous one.

Silvio Guimarães Tractability and Intractability 43 de 50

NP-Complete Problems

I What are the hardest problems in NP?
I A problem X is NP-Complete if

1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

I Suppose X is NP-Complete. Then X can be solved in
polynomial-time iff P = NP .

Corollary: If there is any problem in NP that cannot be solved in
polynomial time, then no NP-Complete problem can be solved in
polynomial time.

I Are there any NP-Complete problems?
1. Perhaps there are two problems X1 and X2 in NP such that there

is no problem X ∈ NP where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each

strictly harder than the previous one.

Silvio Guimarães Tractability and Intractability 43 de 50

NP-Complete Problems

Silvio Guimarães Tractability and Intractability 44 de 50

I A problem X is NP-Hard if
1. for every problem Y ∈ NP, Y ≤P X .

I A problem X is NP-Complete if
1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

NP-Complete Problems

Silvio Guimarães Tractability and Intractability 44 de 50

I A problem X is NP-Hard if
1. for every problem Y ∈ NP, Y ≤P X .

I A problem X is NP-Complete if
1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

NP-Complete Problems

Silvio Guimarães Tractability and Intractability 44 de 50

I A problem X is NP-Hard if
1. for every problem Y ∈ NP, Y ≤P X .

I A problem X is NP-Complete if
1. X ∈ NP and
2. for every problem Y ∈ NP, Y ≤P X .

P

NP NP − Hard

NP − C

Circuit Satisfiability

I Cook-Levin Theorem Circuit Satisfiability is
NP-Complete.

I A circuit K is a labelled, directed acyclic graph such that
1. the sources in K are labelled with constants (0 or 1) or the name

of a distinct variable (the inputs to the circuit).
2. every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3. a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE A circuit K .

QUESTION Is there a truth assignment to the inputs that causes
the output to have value 1?

Silvio Guimarães Tractability and Intractability 45 de 50

Circuit Satisfiability

I Cook-Levin Theorem Circuit Satisfiability is
NP-Complete.

I A circuit K is a labelled, directed acyclic graph such that
1. the sources in K are labelled with constants (0 or 1) or the name

of a distinct variable (the inputs to the circuit).
2. every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3. a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE A circuit K .

QUESTION Is there a truth assignment to the inputs that causes
the output to have value 1?

Silvio Guimarães Tractability and Intractability 45 de 50

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability .

I Claim we will not prove: any algorithm that takes a fixed number n
of bits as input and produces a yes/no answer
1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of

the circuit is a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of
length n, we want to determine whether s ∈ X using a black box
that solves Circuit Satisfiability.

I What do we know about X? It has an efficient certifier B(·, ·).
I To determine whether s ∈ X , we ask

Is there a string t of length p(n) such that B(s, t) = yes?’

Silvio Guimarães Tractability and Intractability 46 de 50

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability .

I Claim we will not prove: any algorithm that takes a fixed number n
of bits as input and produces a yes/no answer
1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of

the circuit is a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of
length n, we want to determine whether s ∈ X using a black box
that solves Circuit Satisfiability.

I What do we know about X? It has an efficient certifier B(·, ·).
I To determine whether s ∈ X , we ask

Is there a string t of length p(n) such that B(s, t) = yes?’

Silvio Guimarães Tractability and Intractability 46 de 50

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability .

I Claim we will not prove: any algorithm that takes a fixed number n
of bits as input and produces a yes/no answer
1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of

the circuit is a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of
length n, we want to determine whether s ∈ X using a black box
that solves Circuit Satisfiability.

I What do we know about X? It has an efficient certifier B(·, ·).
I To determine whether s ∈ X , we ask

Is there a string t of length p(n) such that B(s, t) = yes?’

Silvio Guimarães Tractability and Intractability 46 de 50

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability .

I Claim we will not prove: any algorithm that takes a fixed number n
of bits as input and produces a yes/no answer
1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of

the circuit is a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of
length n, we want to determine whether s ∈ X using a black box
that solves Circuit Satisfiability.

I What do we know about X?

It has an efficient certifier B(·, ·).
I To determine whether s ∈ X , we ask

Is there a string t of length p(n) such that B(s, t) = yes?’

Silvio Guimarães Tractability and Intractability 46 de 50

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability .

I Claim we will not prove: any algorithm that takes a fixed number n
of bits as input and produces a yes/no answer
1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of

the circuit is a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of
length n, we want to determine whether s ∈ X using a black box
that solves Circuit Satisfiability.

I What do we know about X? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask
Is there a string t of length p(n) such that B(s, t) = yes?’

Silvio Guimarães Tractability and Intractability 46 de 50

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability .

I Claim we will not prove: any algorithm that takes a fixed number n
of bits as input and produces a yes/no answer
1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of

the circuit is a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of
length n, we want to determine whether s ∈ X using a black box
that solves Circuit Satisfiability.

I What do we know about X? It has an efficient certifier B(·, ·).
I To determine whether s ∈ X , we ask

Is there a string t of length p(n) such that B(s, t) = yes?’

Silvio Guimarães Tractability and Intractability 46 de 50

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask
Is there a string t of length p(|s|) such that B(s, t) = yes?

I View B(·, ·) as an algorithm on n + p(n) bits.
I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the

bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes
K satisfiable.

Silvio Guimarães Tractability and Intractability 47 de 50

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask
Is there a string t of length p(|s|) such that B(s, t) = yes?

I View B(·, ·) as an algorithm on n + p(n) bits.
I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the

bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes
K satisfiable.

Silvio Guimarães Tractability and Intractability 47 de 50

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask
Is there a string t of length p(|s|) such that B(s, t) = yes?

I View B(·, ·) as an algorithm on n + p(n) bits.
I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the

bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes
K satisfiable.

Silvio Guimarães Tractability and Intractability 47 de 50

Example of Transformation to Circuit Satisfiability

I Does a graph G on n nodes have a two-node independent set?

I s encodes the graph G with
(n
2

)
bits.

I t encodes the independent set with n bits.
I Certifier needs to check if

1. at least two bits in t are set to 1 and
2. no two bits in t are set to 1 if they form the ends of an edge (the

corresponding bit in s is set to 1).

Silvio Guimarães Tractability and Intractability 48 de 50

Example of Transformation to Circuit Satisfiability

I Does a graph G on n nodes have a two-node independent set?
I s encodes the graph G with

(n
2

)
bits.

I t encodes the independent set with n bits.
I Certifier needs to check if

1. at least two bits in t are set to 1 and
2. no two bits in t are set to 1 if they form the ends of an edge (the

corresponding bit in s is set to 1).

Silvio Guimarães Tractability and Intractability 48 de 50

Proving Other Problems NP-Complete

If Y is NP-Complete and X ∈ NP such that Y ≤P X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving that X is
NP-Complete can be defined as follows
1. Prove that X ∈ NP .
2. Select a problem Y known to be NP-Complete .

3. Prove that Y ≤P X .

I If we use Karp reductions , we can refine the strategy:
1. Prove that X ∈ NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance sY of problem Y . Show how to

construct, in polynomial time, an instance sX of problem X such
that
(a) If sY ∈ Y , then sX ∈ X and
(b) If sX ∈ X , then sY ∈ Y .

Silvio Guimarães Tractability and Intractability 49 de 50

Proving Other Problems NP-Complete

If Y is NP-Complete and X ∈ NP such that Y ≤P X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving that X is
NP-Complete can be defined as follows

1. Prove that X ∈ NP .
2. Select a problem Y known to be NP-Complete .

3. Prove that Y ≤P X .

I If we use Karp reductions , we can refine the strategy:
1. Prove that X ∈ NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance sY of problem Y . Show how to

construct, in polynomial time, an instance sX of problem X such
that
(a) If sY ∈ Y , then sX ∈ X and
(b) If sX ∈ X , then sY ∈ Y .

Silvio Guimarães Tractability and Intractability 49 de 50

Proving Other Problems NP-Complete

If Y is NP-Complete and X ∈ NP such that Y ≤P X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving that X is
NP-Complete can be defined as follows
1. Prove that X ∈ NP .
2. Select a problem Y known to be NP-Complete .

3. Prove that Y ≤P X .

I If we use Karp reductions , we can refine the strategy:
1. Prove that X ∈ NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance sY of problem Y . Show how to

construct, in polynomial time, an instance sX of problem X such
that
(a) If sY ∈ Y , then sX ∈ X and
(b) If sX ∈ X , then sY ∈ Y .

Silvio Guimarães Tractability and Intractability 49 de 50

Proving Other Problems NP-Complete

If Y is NP-Complete and X ∈ NP such that Y ≤P X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving that X is
NP-Complete can be defined as follows
1. Prove that X ∈ NP .
2. Select a problem Y known to be NP-Complete .

3. Prove that Y ≤P X .

I If we use Karp reductions , we can refine the strategy:
1. Prove that X ∈ NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance sY of problem Y . Show how to

construct, in polynomial time, an instance sX of problem X such
that
(a) If sY ∈ Y , then sX ∈ X and
(b) If sX ∈ X , then sY ∈ Y .

Silvio Guimarães Tractability and Intractability 49 de 50

NP-Completeness

Silvio Guimarães Tractability and Intractability 50 de 50

	Intractability
	Reductions
	Reductions using simple equivalence
	Reductions from special case to general case
	Reductions with Gadgets

	NP
	NP-Complete

