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Abstract Monitoring wound healing is a necessary proce-
dure to help health services control pressure ulcers. The
correct diagnosis depends on clinical observations by doc-
tors and nurses during patient visits. The evaluation of the
wound area represents one of the most important data.
Usually, health professionals assess ulcers through visual
inspection, using rulers and decals. These ones, in direct
contact with these lesions, may cause discomfort and in-
ducing other infections, and consequently, worsen the pa-
tient’s clinical condition. Understanding and knowing these
injuries allows for better preventive and therapeutic ac-
tions. In this paper, we aim to present an automatic and
effective method for ulcer delineation according to the fol-
lowing pipeline: (i) graph-based superpixel segmentation;
(ii) superpixel feature extraction; (iii) superpixel classifica-
tion; (iv) ulcer segmentation; and (v) feature description.
The main idea is to automatically compute pressure ulcer
measurements for identifying the lesion area, allowing the
follow-up of the scar evolution. Our graph-based superpixel
segmentation method outperformed five other state-of-the-
art approaches, as well as deep learning models, reaching
92.6% sensitivity, 98.6% specificity, 97.6% precision, 96.6%
accuracy, and 90.4% intersection over the union.

Keywords Superpixel · graphs · pressure ulcers · health

1 INTRODUCTION

One of the complications that arise from prolonged hospi-
talization is skin lesions that can progress to pressure ul-
cers [26, 32, 37]. Pressure ulcers are chronic injuries result-
ing from excessive compression of soft tissue against bony
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prominences and intricate surfaces or medical devices. Pa-
tients with ulcers have extended lengths of stay, favoring
new illnesses that generate physical, emotional, and finan-
cial wear for the public/private health systems [36]. More-
over, chronic injuries are among the leading causes of in-
creased morbidity and mortality in patients with chronic-
degenerative diseases and the elderly [35]. The skin, when
injured, soon starts the healing process through a dynamic,
continuous, complex, and interdependent process, composed
of a series of overlapping phases [17]. The use of rulers and
decals in direct contact with ulcer lesions during a visual
inspection by health professionals can cause discomfort to
the patient, as well as increase the risk of infection and
worsen the patient’s clinical condition. This strategy is of-
ten imprecise, subjective, and without a well-defined stan-
dard among health professionals [30,31]. It also lacks a stan-
dardized method of assessment, leading to inconsistencies in
diagnosis and treatment. Furthermore, the reliance on vi-
sual inspection alone may not provide a comprehensive un-
derstanding of the ulcer, such as its depth and size, which
can impede accurate diagnosis and treatment planning. Le-
sion healing can be better observed using monitoring scales
through the development of computational methods that
make the clinical assessment through digital images, as they
provide more accurate and reliable information [31].

This paper presents an effective method for ulcer de-
lineation that uses the Dynamic and Iterative Spanning
Forest (DISF) method as its central core. We hypothesize
that more effective superpixel delineation method may high-
light the area of the lesion making it possible the better
understanding the behavior of the lesion. For computing
the pressure ulcer measurements, we have used a pipeline
composed of: (i) image acquisition; (ii) pre-processing and
superpixel segmentation; (iii) feature extraction; (iv) data
preparation; (v) classification; and (vi) post-processing, as
shown in Fig. 1. An additional contribution of this work
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is a comparison of the effectiveness of five other superpixel
methods in the pre-processing step of the pipeline.

Fig. 1: The proposed methodology for measuring pressure
ulcers is based on superpixel computation. (Similar to Silva
and Machado [31]).

This work is organized as follows. Section 2 briefly de-
scribes some related works. Section 3 describes materials
and methods for automatic pressure ulcer segmentation.
Section 4 presents and discusses the experimental results,
while Section 5 draws conclusions and future works.

2 RELATED WORKS

Veredas et al. [34] proposed a method based on k-means
clustering for image segmentation with a comparison of
three different machine learning approaches to classify each
segmented region as the appropriate tissue type. The re-
sults reached a reliability index of around 95%. Deng et
al. [9] presented a new pipeline for the automatic extrac-
tion of flaky corneal ulcer areas. First, a semi-automatic
method identifies the cornea for each image. Then, a four-
step approach segments the ulcer region within the cornea
as follows: (i) identify/adjust the color information of reflec-
tive areas; (ii) use Simple Linear Iterative Clustering (SLIC)
to segment each image into 1000 superpixels; (iii) employ
Support Vector Machine (SVM) to classify superpixels into
two classes; and (iv) smooth the ulcer segmentation results
through erosion and dilation. They used 150 clinical im-
ages. Results demonstrated that the method significantly
surpassed two classic segmentation algorithms: active con-
tour and Otsu threshold.

More recently, deep learning models such as Convolu-
tional Neural Networks (CNN) and Fully Connected Deep
Networks (FCDN) have been applied to the problem of ul-
cer assessment. Lu et al. [22] proposed a CNN model and a
color correction method to segment non-homogeneous med-
ical images. When applied to 300 lesion images, their ap-
proach reached an average accuracy of 83%. Liu et al. [21]

introduced a lightweight neural network to perform wound
segmentation. Training and test procedures used a more ex-
tensive set of 950 images. After a post-processing step, the
best model achieved 98% accuracy, 91% sensitivity, and 93%
precision. A minimal dataset of 22 high-resolution images
of pressure ulcers was used by Zahia et al. [38] with a CNN
model to classify tissue types, reaching a global average of
92% accuracy. The efficiency of DNNs in the segmentation
task was improved by Li et al. [18] through background
removal techniques, reaching 95% precision and an inter-
section over union (IoU) of 86%. Blanco et al. [6] proposed
a new method for wound segmentation that uses an an-
notated set of dermatological ulcers to train deep learning
models for identifying superpixels that represent ulcerated
skin. Goyal et al. [13] presented a set of techniques to recog-
nize the presence of infection and ischemia in diabetic foot
ulcers using computerized methods. Their method uses a
new feature descriptor with an ensemble of CNNs to rec-
ognize and identify the region of interest in foot images
and focus on finding the salient features in this area. Silva
and Machado [31] used an SVM classifier combined with
a modified version of the GrabCut segmentation method
for measuring the area affected by pressure ulcers. The pri-
mary motivation for their work was related to the difficulty
of manually monitoring cases of pressure ulcers. Generally,
lesions are evaluated by measuring the affected area with
materials that include adhesive labels and rulers in direct
contact with the lesion, leading to high inaccuracy due to
the degree of subjectivity of the process. Three region seg-
mentation methods were evaluated using a superpixel strat-
egy, and the results were used to extract color and texture
descriptors. After, the GrabCut method was applied to de-
lineate the ulcer-affected region from the rest of the image.
The experimental evaluation using the MEDETEC dataset
(with 105 images of pressure ulcers) showed that the as-
sociation of SVMs with superpixel segmentation surpassed
current methods based on deep learning.

Reis et al. [28] proposed a deep CNN named InSiNet to
detect benign and malignant lesions. Scebba et al. [29] pre-
sented the Detect-and-Segment (DS), a deep-learning ap-
proach to producing wound segmentation maps with high
generalization capabilities. For this approach, dedicated deep
neural networks detected the wound position, isolated the
wound from the perturbing background, and computed a
wound segmentation map. Eldem et al. [10] discussed and
analyzed pressure wound segmentation using different encoder-
decoder-based segmentation models.

Most new superpixel segmentation methods adopt a three-
step pipeline: (i) initial seed sampling; (ii) superpixel delin-
eation; and (iii) seed recomputation. But an inconvenience
of that approach is the need to limit the size of the initial
seed set to the desired number of superpixels that could
hinder finding relevant seeds that are able to generate an
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accurate object edge delineation. Dynamic Iterative Span-
ning Forest (DISF) [4] is a method for computing super-
pixel with a dynamic arc-weight estimation. DISF method
demonstrates to better preserve relevant object edges, es-
pecially for lower numbers of superpixels, compared to the
state-of-the-art approaches.

3 MATERIALS AND METHODS

3.1 Image acquisition

We have used images fromMEDETEC dataset [23], a public
repository of open wounds such as venous leg ulcers, arte-
rial leg ulcers, and pressure ulcers, among others. The ulcer
dataset is composed of 105 images of pressure ulcers with a
resolution of 410× 560 pixels.

3.2 Pre-processing and superpixel segmentation

For the pre-processing step, specular light reflections [16]
were removed from the original image. These are bright
white-colored regions characterized by high intensity, sat-
uration, and contrast. The resulting images were resized to
240 × 300 pixels. Finally, the removal and reconstruction
of the light reflection regions were performed using an in-
painting method [33]. The method takes the binary image as
parameters, which informs the regions to be reconstructed,
and the size of the radius of neighbors to be considered for
the reconstruction, a radius of size r = 3 was used. The
algorithm fills the light reflection regions with neighboring
pixels, recovering the colors hidden by the reflection. An ex-
pert manually annotated the pressure ulcers into ulcer and
non-ulcer regions. In the following, a superpixel segmenta-
tion is done.

Superpixels are groups of connected pixels that share
similar characteristics according to a predicate [4]. The su-
perpixel methods used in this work are described as follows:

1. Entropy Rate Superpixels (ERS) method [20] is a graph-
based algorithm formulated as a graph maximization
problem. ERS uses the entropy rate of a random walk
on a graph as a criterion to generate high-quality super-
pixels.

2. Simple Linear Iterative Clustering (SLIC) method [1]
generates superpixels by clustering pixels based on their
color similarity and proximity in the image plane;

3. Superpixels Extracted via Energy-Driven Sampling (SEEDS)
method [5] is based on a hill-climbing optimization with
efficient exchanges of pixels between superpixels. The
energy function that is maximized is based on enforcing
homogeneity of the color distribution within superpixels;

4. Linear Spectral Clustering (LSC) method [19] produces
compact and uniform superpixels with high memory ef-
ficiency, and it is able to preserve the global properties
of images with low computational costs;

5. Simple Non-Iterative Clustering (SNIC) method [2] is an
improved version of the SLIC algorithm. SNIC is non-
iterative, enforces connectivity from the start, requires
less memory since the distance map is not considered,
and is faster;

6. Dynamic and Iterative Spanning Forest (DISF) method [4]
finds more relevant seeds, reconstructs relevant edges
along with iterations, and guarantees the desired num-
ber of superpixels. DISF assures optimal spanning forests
for path costs based on dynamic arc-weight estimation,
being faster as the desired number of superpixels grows.

Figure 2 presents superpixel segmentation examples for
DISF, ERS, SNIC, LSC, SLIC, and SEEDS.

3.3 Feature extraction

After segmentation into superpixels, color and texture fea-
tures were extracted for the RGB, L*a*b*, Luv, and nor-
malized RGB color spaces. For color descriptors, the values
of mean, variance, asymmetry, frequency and intensity of
the two highest peaks in the histograms were extracted for
each component of the color space after the application of
a moving average filter. The centroids of each superpixel in
each color space were used, totaling 96 color features. Re-
garding the texture ones, the features were extracted based
on co-occurrence matrices [3], Local Binary Pattern His-
tograms (LBPH) [25], and Haar Wavelet Transform [8]. We
used the Haralick descriptors of contrast, correlation, en-
ergy, entropy, and homogeneity, determined at the angles
of 0◦, 45◦, 90◦ and 135◦ at a distance of one pixel. We ex-
tract the features for each of the components R, G, B, a∗,
b∗, u and v. Five more descriptors were extracted and com-
puted from the combination of RG, RB, GB, a∗, b∗, and uv.
A total of 60 texture features were extracted, considering
Haralick and its variations. For the LBPH, the mean, vari-
ance, entropy, and energy were computed for the histogram
location of each superpixel in each of the color space com-
ponents, totaling 12 features. Finally, the Discrete Wavelet
Transform (DWT) was used to extract the energy and en-
tropy descriptors. For this method, three sub-images con-
tain the details in horizontal, vertical, and diagonal orienta-
tion in the third wavelet decomposition level for each RGB
component, totaling nine sub-images. Each sub-image cal-
culated energy and entropy descriptors for each superpixel,
resulting in 18 features. In the end, a total of 186 descriptors
were extracted from each superpixel.
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Fig. 2: Superpixels segmentation examples for DISF, ERS,
SNIC, LSC, SLIC and SEEDS

3.4 Data preparation

The Wrapper algorithm [14], in conjunction with a deci-
sion tree [27], was used to classify the features for selecting
a subset of relevant features. However, the Hill-Climbing
searching algorithm [24], optimized by cross-validation [15],
could select the most relevant attributes for the classifica-
tion task. The feature was normalized in the range from 0
to 1.

3.5 Classification

For classification purposes, the 105 images were randomly
separated into training and test sets. The training and vali-
dation sets were composed of 84 images, equivalent to 80%
of the dataset, while the test set consisted of 21 images. An
SVM with an RBF kernel was used since it has shown to
be effective in medical image classification tasks [34,35]. Pa-
rameters C and γ were defined using the grid search and the
cross-validation technique to find the best parameters. The
parameter C is the regularization parameter that controls
the trade-off between the margin and the misclassification
of training examples. A small value of C creates a wider
margin with more misclassified training examples, while a
large value of C creates a narrow margin with fewer mis-
classified examples. The parameter γ is specific to the RBF
kernel and controls the shape of the decision boundary. A
small value of γ creates a smoother decision boundary, while
a large value creates a more complex decision boundary. For
the grid search, we adjust the space of search in 2−10 → 210

with the steps of 0.1. During the search, we adopted a 10-
fold cross-validation.

3.6 Post-processing

The output classification was transformed into a mask to be
used in the interactive segmentation made by the GrabCut
method. Instead of scribbles drawn by users, an automatic

mask was computed according to the following steps: (i) ap-
plying the morphological dilation filter with a 3 × 3 cross-
type structuring element to the SVM classification result
to fill small discontinuities found between any two misclas-
sified superpixels; (ii) using the Canny algorithm [12] to
detect contours, where the region of the image that is cov-
ered by the most prominent closed contour receives the label
of probable ulcer while the label of non-ulcer is assigned to
the region around it; (iii) applying a skeletonization process
to the closed contour [39], until 65% of its area is eroded
(the branches of the images are removed by erosion); and
(iv) the remaining region is labeled as an ulcer. Thus, the
main idea is to determine the region inside the ulcer to be
used as a mask. This mask is used for the GrabCut method
to perform the segmentation, pointing out the regions of
ulcers.

3.7 Evaluation measures

For measuring the quality of the ulcer identification, we
have used the following measures: (i) Sensibility (S); (ii) Speci-
ficity (E); (iii) Precision (P); (iv) Accuracy (A); and (v) In-
tersection over Union (I). The running time (TE) was also
computed.

4 EXPERIMENTAL RESULTS

4.1 Configuration settings

The main application was developed in Java 11, the classi-
fication in Weka 3.8 [11], data analysis in Python, while the
segmentation methods varied between Java using OpenCV
library [7] (SLIC, LSC, SEEDS, GrabCut), C (DISF), and
Matlab (SNIC and ERS). The experiments were performed
on a desktop with the following settings: Intel Core i7-8700
CPU at 3.20 GHz with 16 GB and Nvidia GeForce RTX
2060 GPU running Windows 10 (64 bits).

In the pre-processing step, we removed and reconstructed
specular light reflections as shown in Figure 3 according to
the following steps. First, the original image is converted

Fig. 3: Process of removal and reconstruction of light re-
flection regions. (a) Original image; (b) Grayscale image;
(c) Binary image with regions of light reflection in white
color; (d) Result of the image after applying the inpainting
method and the average filter.
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into a grayscale image, which is binarized for showing the
light reflection in white color. An inpainting is applied to the
binary image for reconstructing the original image without
the light reflections. For smoothing the image, an average
filter is then applied. As previously related, the set of 105
images was randomly divided into training and test sets.
The set used for training (and cross-validation) was com-
posed of 84 images.

The number of iterations was set to 400 for LSC, SLIC,
and SEEDS since no further changes were observed in the
formation of superpixels. The parameter related to the com-
pactness factor is associated with the different superpixel
shapes that affect the smoothness of the edges between tis-
sue types in the ulcer bed and between the skin and ulcer
regions. Considering the edges between different tissue re-
gions, for each superpixel segmentation method, the com-
pactness factor was set between 0.05 and 0.065 for the LSC,
with the best value being 0.06. For SLIC, the parameter var-
ied from 10 to 25; the best value was 20. For SEEDS, we
varied the parameter from 1 to 4; the best value was 3. For
SNIC, the parameter was in the range of [18, 21], and the
best value was 20. The compactness values were based on
previously published suggestions, as described in the origi-
nal articles of the respective methods.

DISF has the parameter α that controls the trade-off
between the importance of individual pixels and the spatial
coherence of the superpixels. By adjusting the value of α,
DISF can balance the trade-off between these two objec-
tives and generate superpixels that are both visually mean-
ingful and spatially coherent. The parameter related to the
number of superpixels controls the size of the superpixels
generation and is related to the image resolution. Thus,
appropriately adjusting this parameter made a significant
impact on the SVM classifier performance. Moreover, seeds
are designed to compete with each other and conquer the
most closely connected nodes, mathematically defining each
superpixel as an optimal path tree. For the DISF method,
we set the number of seeds to be proportional to the size of
5% of the total image size. So, for an image of 240×300, the
number of seeds is set up to 3,600. For the ERS method, we
set the balancing term λ′ to 0.5, the kernel bandwidth σ to
5.0, and we adopted an 8-connectivity graph, as suggested
by the authors. The parameters setup for the superpixel
segmentation step are synthesized in Table 1. The number
of generated superpixels is also presented.

After the superpixel generation, each one is described by
color and texture features. For the classification, the SVM
classifies the region as ulcer or non-ulcer. A trained nurse
determined the ground truth from manual segmentation.
For the superpixel labeling, only the superpixels contain-
ing pixels with a single tissue type were incorporated into
the training set. Figure 4 illustrates the superpixel labeling
process using DISF, in which the ulcer underwent manual

Table 1: Parameters setup for the superpixel segmentation
for DISF, ERS, SNIC, LSC, SLIC, and SEEDS. The number
of generated superpixels is also shown.

DISF ERS SNIC LSC SLIC SEEDS
Iterations – – – 400 400 400
Superpixels Size 200 200 200 18 19 300
# Seeds 3600 – – – – –
Compactness – – 20 0.06 20 3
λ′ – 0.5 – – – –
σ – 5 – – – –
Connectiveness – 1 – – – –
# Generated Superpixels 200 200 208 208 ≈ 208 ∼237 225

segmentation in (b) and superpixel segmentation in (c). In
the end, the superpixels were then mapped to the manual
labels to create a superpixel grid in (d), with superpixels
in white representing the ulcer, the ones in light gray cor-
responding to healthy skin, and the ones in dark gray con-
taining labeled pixels from both classes and were therefore
not included in the SVM training.

In data preparation, the number of training instances
and selected attributes for DISF, ERS, SNIC, LSC, SLIC,
and SEEDS are summarized in Table 2, while Table 3 shows
the parameters for the training using SVM for each method.

Table 2: Number of training instances and selected at-
tributes for DISF, ERS, SNIC, LSC, SLIC, and SEEDS.

DISF ERS SNIC LSC SLIC SEEDS
# Training Instances 7964 7540 7960 7508 7726 8336
# Selected Attributes 10 11 18 14 10 10

Table 3: Parameters for training step with SVM for DISF,
ERS, SNIC, LSC, SLIC, and SEEDS.

DISF ERS SNIC LSC SLIC SEEDS
% of Folds 10 10 10 10 10 10
C 7943.28 39.81 1.59 7.94 15848.93 1.58
γ 0.50 1.26 10.00 2.51 0.25 12.58

Fig. 4: Superpixel labeling. (a) original image; (b) man-
ual segmentation; (c) superpixels; (d) superpixel labeling:
light gray color represents regions of healthy skin, white
the regions of ulcer, and dark gray the excluded superpixels
composed of both tissues.
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4.2 Quantitative Analysis

An SVM classifier was designed for each of the described
superpixel methods. Table 4 presents the results during the
training step for SVM classifier using DISF, ERS, SNIC,
LSC, SLIC, and SEEDS. The performance achieved for each
method during the test step, with and without post-processing
by the GrabCut, is shown at Table 5.

We compare results in pairs of superpixels to assess pos-
sible discrepancies between the metrics results. A two-tailed
paired t-test (Student’s t-test) was used in this compar-
ative approach, considering the values obtained from the
SVM + Grabcut technique. The DISF confidence inter-
vals for a level of 95% are S = [88.7, 96.5], E = [97.6, 99.6],
P = [96.3, 98.8], A = [95.5, 97.7], I = [86.8, 94.0]. Among
the results, a significant difference was found between the
results of Sensitivity (S), Accuracy (A), and Intersection
over Union (I) of some pairs of superpixels. In the other
metrics, no significant differences were observed consider-
ing the value of α = 0.05. When evaluating all possible
combinations and statistical tests, the classifier trained with
the superpixels formed by DISF showed better performance
in all metrics used, except processing time (11.0s), slightly
above SLIC (9.6s), ERS (10.5s) and SNIC (10.7s), but with
a small difference. It is important to note that the execu-
tion time of a method in a given programming language can
vary depending on several factors, including the nature of
the method, the efficiency of the implementation, and the
processing power of the machine on which the code is ex-
ecuted. In general, the C language tends to perform faster
than most other languages, but other languages may have
advantages in specific situations.

4.3 Qualitative Analysis

Figures 5 and 6 show segmentation results with their re-
spective masks and the overlap between the manual seg-
mentation and those generated by GrabCut, for DISF, ERS,
SNIC, LSC, SLIC, and SEED methods.

Figure 5 shows some examples of segmentation with the
worst results for each method. One can observe a poor cre-
ation of the masks generated from the classification results
with the SVM. Among the methods, the SNIC presented
the worst segmentation among the examples presented. In

Table 4: Results of accuracy during the training and val-
idation for each SVM classifier using DISF, ERS, SNIC,
LSC, SLIC, and SEEDS. The time (in seconds) to build
each model is presented.

DISF ERS SNIC LSC SLIC SEEDS
Training Acc. 85.71% 85.85% 88.17% 88.64% 86.67% 88.09%
Validation Acc. 85.86% 86.25% 88.37% 86.85% 86.80% 88.36%
Time (s) 13425.3 3288.11 4197.16 787.02 15744.03 3696.8

Table 5: Average ± standard deviation of Sensitivity (S),
Specificity (E), Precision (P), Accuracy (A), Intersection
over Union (I), and Execution Time (TE) in seconds for
DISF, ERS, SNIC, LSC, SLIC, and SEEDS.

SVM TE (s) SVM+Grab TE (s)

DISF

S 91.8±8.7

10.6±1.9

92.6±8.6

11.0±2.1
E 85.8±7.9 98.6±2.2
P 79.4±9.4 97.6±2.7
A 88.3±4.2 96.6±2.4
I 73.8±9.4 90.4±8.0

ERS

S 79.6±14.4

10.1±1.9

82.3±16.2

10.5±1.9
E 88.1±7.7 98.5±1.9
P 80.3±1.0 97.3±3.4
A 85.6±6.3 92.9±5.4
I 66.6±14.0 80.2±15.7

SNIC

S 55.9±14.1

10.3±1.6

48.5±25.8

10.7±1.7
E 88.8±7.4 98.6±2.2
P 75.2±14.5 96.4±7.7
A 77.1±7.2 80.9±10.3
I 47.2±13.3 47.6±24.9

LSC

S 89.8±8.5

15.21±1.8

90.5±10.1

15.56±1.8
E 81.7±10.0 97.6±3.8
P 75.5±8.7 95.7±6.1
A 85.3±5.4 95.3±3.4
I 69.2±8.6 86.9±10.7

SLIC

S 88.3±10.1

9.3±4.6

92.2±10.1

9.6±0.5
E 82.8±9.9 98.3±2.0
P 76.5±11.2 96.6±2.9
A 86.1±6.4 95.9±1.8
I 69.3±11.3 89.8±10.4

SEEDS

S 86.5±9.4

13.5±2.2

86.6±10.8

13.5±2.2
E 81.1±10.4 95.2±3.3
P 73.7±11.2 97.1±3.7
A 83.6±4.0 96.4±2.1
I 66.0±11.5 89.1±11.1

Fig. 5(q), a large region with non-ulcer labels can be seen
inside the wound’s lesion. Furthermore, it was observed that
the sensitivity, specificity, and precision values were much
lower when compared to the other methods. This demon-
strates the incredible difficulty of detecting ulcer and non-
ulcer regions in these examples. In general, more significant
variations in sensitivity were observed, whose values varied
from 12% to 66%. This may be related to the selection of
color and texture attributes. Perhaps the selected super-
pixels had a low number of attributes of color and texture
characteristics thus hindering the training of the classifier
and, therefore, leading to misclassification.

The skeletonization step of the method contributes to
generating a mask that inaccurately maps the region that
does not present an ulcer, causing this region to be in-
side the perimeter of the wound. Likewise, we observed
the prevalence of the mask that indicates non-ulcer regions
within the ulcer area in Figures 5(b), 5(e), 5(h), 5(k), 5(n),
and 5(q). This occurrence erroneously indicates that Grab-
Cut should delete these regions. Despite that, some regions
labeled as non-ulcer and probably ulcer within the ulcer
area were correctly segmented with an ulcer in the Grab-
Cut results in Figure 5(c), 5(f), 5(i), 5(l), 5(o), and 5(r),
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with emphasis on the last one, in which part of the region
previously considered as an ulcer outside the perimeter of
the ulcer in Figure 5(q), is correctly detected as non-ulcer.

In contrast, Figure 6 illustrates the most effective seg-
mentation for each method. Considering the excellent re-
sult of the classification generated by the SVM, one can
observed that the regions of probable ulcer in the masks of
Figs. 6(f), 6(i), 6(l), 6(o), and 6(r) follow the shape of the ul-
cer and, therefore, present a segmentation closer to manual
segmentation performed by the nurse. Figure 7 shows the
segmentation results with the trained SVM and the post-
processing results using the GrabCut along with the use of
DISF method. In the first row, we have the original image.
In the second row, one can observe segmentation results
with the SVM. It can be noticed that the method had more
difficulties in classifying the non-ulcer regions (lower speci-
ficity) than the ulcer regions (higher specificity). Segmenta-
tion results from post-processing with GrabCut are shown
in the third row. From the quantitative point-of-view, it
is possible to observe a substantial improvement, showing
that the post-processing step could practically altogether
remove the false-positive regions and include a large number
of false-negative regions, which impact on the effectiveness
of the segmentation.

4.4 Discussion

4.4.1 Performance evaluation

Evaluating the performance of an automatic ulcer delin-
eation method against a manual segmentation is a challeng-
ing task. To address this, a multi-faceted approach is sug-
gested. Firstly, quantitative metrics such as sensibility (S),
specificity (E), precision (P), accuracy (A), and intersection
over union (I) can be used to compare the overlap between
two segmentations. Secondly, a qualitative visual inspection
can be conducted to identify any errors or inconsistencies
in the segmentations. Thirdly, consulting a medical expert
may provide valuable insights into the accuracy of the algo-
rithm’s output. Lastly, statistical tests, such as t-tests may
be performed to determine the significance of any differ-
ences between the segmentations. A comprehensive evalu-
ation methodology, as presented in this paper, combining
these different approaches, can provide a robust assessment
of the performance of the automatic ulcer delineation tech-
nique.

4.4.2 Limitations

For segmentation and delineation of pressure ulcers, major
limitations are their variation in appearance and shape, as
well as the presence of noise and artifacts in the images.
In addition, the presence of other types of skin lesions can

make specific detection of pressure ulcers more difficult. An-
other limitation is the need to segment the wound area into
different layers, such as necrotic tissue, granulation, and ep-
ithelialization, which can be an additional challenge.

4.4.3 Benchmark

In order to provide a comparative approach, we highlight
the related works and the results found, as shown in Table
6.

Fig. 5: Examples of ineffective segmentation for DISF, ERS,
SNIC, LSC, SLIC, and SEEDS methods. Original images
(row 1), masks (row 2) and overlay (row 3) between manual
segmentation and DISF methods (column 1), ERS (column
2), SNIC (column 3), LSC (column 4), SLIC (column 5),
and SEEDS (column 6). Masks indicate dark gray non-ulcer
regions, probably light gray and black ulcers. It also shows
the shape of the wound traced in white. Overlapping images
indicate regions of false negatives in black, false positives in
dark gray, and true positives in light gray. Sensitivity (S),
specificity (E), and precision (P) are provided.

Regarding the state-of-the-art, including methods based
on deep learning, no method outperformed the proposed
method in more than one metric. A lot of papers use a re-
stricted number of metrics to evaluate the proposed method.
Regarding sensitivity, the work by Reis et al. [28] presents
better results, followed by the work of Blanco et al. [6] and
Silva and Machado [31]. In Reis et al. [28], sensitivity is 4.9%
higher, however, the proposed method exceeds specificity
by 7.4% and accuracy by 2%. In Silva and Machado [31],
sensitivity is 1.1% higher, however, the proposed method
exceeds specificity by 1.7%, precision by 3.2%, accuracy by
0.6% and intersection over union by 1.4%. Regarding ac-
curacy, Eldem et al [10] presents better results, being 3.1%
better than the proposed method, followed by Liu et al. [21],
being 1.6% higher than the proposed method. However, the
proposed method outperforms by 2%, 4.3% and 5.8% the
results presented in [21], in terms of sensitivity, precision,
and intersection over union, respectively. In the context of
medical image analysis, it is considered important that the
results can be explained, that may not always occurs for
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Fig. 6: Examples of effective segmentation. Original images
(row 1), masks (row 2), and overlay (row 3) between man-
ual segmentation and DISF (column 1), ERS (column 2),
SNIC (column 3), LSC (column 4), SLIC (column 5), and
SEEDS (column 6). Masks indicate dark gray non-ulcer re-
gions, probably light gray and black ulcers. It also shows the
shape of the wound traced in white. Overlapping images in-
dicate regions of false negatives in black, false positives in
dark gray, and true positives in light gray. Sensitivity (S),
specificity (E), and precision (P) are provided.

Fig. 7: Example of the effectiveness of GrabCut segmenta-
tion using DISF. The original images are shown on the first
row, the SVM results on the second row and the GrabCut
results on the last row. Images indicate regions of false nega-
tives in black, false positives in dark gray, and true positives
in light gray. Sensitivity (S), Specificity (E) and Precision
(P) are also provided.

deep learning methods, made clearer, and that the behavior
of the methods can be predicted in terms of performance.

It is worth mentioning previous works that use the same
methodology and database, the ones developed by Silva and
Machado [30, 31]. DISF showed better results for the auto-
matic measurement of pressure ulcers with regard to speci-
ficity, precision, and intersection over union when associated
with the post-processing technique with GrabCut, accord-
ing to Table 7.

5 CONCLUSION

This work presented a graph-based superpixel segmenta-
tion method for segmenting and identifying pressure ulcer.
Based on graph and superpixel representation, it improved

Table 6: Performance metrics reported by methods in the
literature for digital image segmentation of chronic lesions.
‡ Number of training + validation (test) images. Studies
that used only public datasets are marked with P. *Test
based on 10-fold cross-validation. **Test based on 5-fold
cross-validation. † The number of test images was not in-
formed. Methods: J-value Segmentation (J-SEG); Support
Vector Machines (SVM); Neural Networks (NN); Convolu-
tional Neural Networks (CNN or ConvNet); Fully Convolu-
tional Network (FCN); Conditional Random Field (CRF);
Deep Neural Networks (DNN); Convolutional Networks
combined (MobileNet-UNet); Simple Linear Iterative Clus-
tering (SLIC). Metrics: Sensitivity (S); Specificity (E); Pre-
cision (P); Precision (A), Intersection over union (I).

Reference Approach Dataset‡ S E P A I
Veredas et al. 2009 Mean shift, growing region, NN

and Bayesian Classifiers
113* 78.7 94.7 91.5 – –

Wannous et. al. 2010 J-SEG and SVM 25† 77.0 92.0 – – –
Veredas et. al. 2015 K-means and SVM 90(23) – – 88.1 – –
Wang et al. 2015 CNN 500(150) – – – – 47.3
Wang et al. 2017 SLIC, SVM and CRF 100* 73.3 94.6 – – –
Liu et al. 2017 CNN and CRF 760(190) 90.6 – 93.3 98.2 84.6
Lu et al. 2017 CNN 300†P – – – 83.0 –
Dhane et. al. 2017 Clustering Spectral Fuzzy 70(70) 87.3 95.7 – 91.5 79.0
Silva et. al. 2018 Filtering and Morphologic op-

erations
110(110)P 81.6 – 90.8 81.3 –

Zahia et. al. 2018 CNN 18(4) – – – 92.0 –
Li et al. 2018 DNN and Filtering 760(190) – – 94.7 – 86.3
Li et al. 2019 DNN and Filtering 760(190) – – 95.3 – 86.5
Blanco et al. 2019 QTDU, CNN 217†P* 97.0 97.4 – – –
Goyal et al. 2020 CNN and henceforth TML 7136 (2038)** 88.6 92.1 91.8 90.3 –
Silva et al. 2021 SEEDS, SVM and GrabCut 84(21)P 93.7 96.9 94.4 96.0 89.0
Niri et al. 2021 FCN 164(55) – – – 92.9 –
Reis et al. 2022 CNN 9514(501)P 97.5 91.2 – 94.6 –
Scebba et al. 2022 UNet 84(21)P** – – – – 83.0
Eldem et al. 2022 MobileNet-UNet 90(15)P** – – – 99.7 –
Proposed DISF, SVM and GrabCut 84(21)P* 92.6 98.6 97.6 96.6 90.4

Table 7: Comparison of performance among works on
MEDTEC dataset. Metrics: Sensitivity (S); Specificity (E);
Accuracy (P); Accuracy (A); Intersection over Union (I).

Method S E P A I
Filtering [30] 81.6 − 90.8 81.3 −
SEEDS [31] 93.7 96.9 94.4 96.0 89.0

DISF 92.6 98.6 97.6 96.6 90.4

the results of pressure ulcer assessment when compared to
the state-of-the-art. The proposed method combines classi-
cal, unsupervised filters, clustering, feature extraction, di-
mensionality reduction, and supervised machine learning
algorithms. In particular, the superpixel method was com-
pared to state-of-the-art superpixel methods, such as the
ERS, SNIC, LSC, SLIC, and SEEDS methods. The results
obtained by DISF were better for the automatic measure-
ment of pressure ulcers concerning specificity, precision, and
intersection over union.

Further work may consider new interactive segmentation
methods. Also, the possibility of applying the methodology
in other more extensive databases and for different types of
chronic lesions must be examined. For this purpose, ensem-
bles that combine shallow and deep learning techniques are
promising as they may take advantage of different perspec-
tives.
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