
02

TECHNICAL
REPORT 2023

A novel method for temporal graph
classification based on transitive

reduction

(Submitted – conference – DSAA)

02

TECHNICAL
REPORT 2023

A novel method for temporal graph
classification based on transitive

reduction

(Submitted – conference – DSAA)

02

TECHNICAL
REPORT 2023

A novel method for temporal graph
classification based on transitive

reduction

Citation details:
Carolina Jerônimo, Simon Malinowski, Zenilton K. G.
Patroćınio Jr., Guillaume Gravier, Silvio Jamil Ferzoli
Guimarães (2023). A novel method for temporal graph
classification based on transitive reduction. Technical
Report ImScience/PUC Minas #02/2023.

Technical report – ImScience 02/2023

A novel method for temporal graph classification based on transitive
reduction

Carolina Jerônimo, Simon Malinowski, Zenilton K. G. Patroćınio Jr., Guillaume

Gravier, Silvio Jamil Ferzoli Guimarães

June 8, 2023

Abstract Domains such as bio-informatics, social network

analysis, computer vision, describe relations between enti-

ties and cannot be interpreted as vectors or fixed grids, in-

stead, they are naturally represented by graphs. Normally,

this kind of data evolve over time in a dynamic world, re-

specting a temporal order being known as temporal graphs.

This became a challenge since subgraph patterns are very

difficult to find and the distance between those patterns

may change irregularly over time. While state-of-the-art

methods are primarily designed for static graphs and may

not capture temporal information, recent works have pro-

posed mapping temporal graphs to static graphs to allow

for the use of conventional static kernels and graph neu-

ral approaches. In this study, we compare the transitive

reduction impact on these mappings in terms of accuracy

and computational efficiency across different classification

tasks. Furthermore, we introduce a novel mapping method

using transitive reduction approach that outperforms ex-

isting techniques in terms of classification accuracy. Our

experimental results demonstrate the effectiveness of the

proposed mapping method in improving the accuracy of

supervised classification for temporal graphs, while main-

taining reasonable computational efficiency.

Keywords Temporal Graph · learning on dynamic

graphs · temporal graph classification.

1 Introduction

Graphs are used to represent linked data in various do-

mains such as social network [3,2], disease analysis [13,39,

34], bioinformatics [38] and computer vision [25]. Model-

Silvio Jamil F. Guimarães
ImScience/PUC-Minas – Belo Horizonte 31980-110, Brazil
E-mail: sjamil@pucminas.br

ing problems in terms of graphs allows for a deep under-

standing of the relationship between all elements. In social

networks, for example, we can estimate how much a part

of the network influences another [37]. In graph theory, a

vertex is reachable from another if there exists, at least, a

path between these two vertices. The existence of two or

more different paths between two vertices, called the tran-

sitive relation, may be seen as redundant (or ambiguous)

making it more difficult to understand the graph behavior.

The result of the Transitive Reduction (TR) of a directed

graph is a subgraph that has the same reachability rela-

tion as the original graph but with the minimum number

of edges, preserving all paths between nodes in the original

graph but removing unnecessary edges that can be inferred

from the remaining edges [1]. An example of TR is shown

in Figure 1, in which the edge a–d was removed because

there is a path from a to d passing through c or b. TR is

useful in many applications, such as database optimization,

model checking, and software verification [7,8,32].

a

b

c

d e

(a)

a

b

c

d e

(b)

Fig. 1: Example of a transitive reduction in which the paths

between all vertices are preserved. If there exists a path

between two vertices in (a), then as can be seen in (b), there

is one only path between them in the simplified graph.

Many real-world graphs are not Directed acyclic graphs

(DAGs), for which TR is well-defined. Besides, most of those

graphs have cycles, such as social networks and transporta-

A novel method for temporal graph classification based on transitive reduction 3

tion networks, and TR may not be applicable or helpful in

these cases. This motivates our decision to use TR for tem-

poral graphs. When working with temporal graphs, since

one cannot come back in time, it is possible to avoid cycles

and be able to use the TR algorithm. And, as it will be

shown, avoiding redundancy can improve the accuracy of

classification tasks.

The idea of temporal graphs (also known as dynamic,

evolving, or time-varying graphs), was first introduced in

1997 [11] discussing applications of temporal graphs and

highlighting the great importance of a systematic treat-

ment of the subject. The study in [16] provided tools and

algorithms needed for controlling a system with dynamic

graphs, the authors also studied on invariance and the reach-

ability properties of these structures, proposing formalism

leading to appropriate methods for dynamic graph prob-

lems. In an effort to integrate different notations found in

the fields of delay-tolerant networks, the authors in [5] in-

troduced the definition of Time-Varying Graphs. Later, a

lot of works studied how algorithms for statics graphs can

be applied with dynamics ones, such as shortest path [35],

traveling salesman [18], and minimum spanning trees [12].

It is interesting to note that temporal graphs are present in

numerous domains, such as communication networks [30,

23,22], biological systems in cell and microbiology, neural

networks [15,24], and economics [4,20]. In the literature, a

lot of works have focused on how to apply learning tasks

to such temporal graphs. Classification of the outbreak of

fake news disseminated on social networks, the proliferation

of disease, prediction of re-routing traffic, and video classi-

fication are examples of such learning tasks that can be

applied to temporal graphs. Hence, while there are existing

techniques for classifying temporal graphs, it is necessary

to note that many of these methods are computationally

expensive. This work addresses this issue by reducing this

complexity while maintaining reasonable accuracy.

Therefore, the major goal of our work is to analyze the

impact of the TR algorithm on temporal graphs for a clas-

sification task on real-world data sets, providing a perfor-

mance comparison of different techniques in terms of accu-

racy and computational efficiency across different classifi-

cation tasks. Furthermore, we introduce a novel method for

mapping temporal graphs to static ones based on TR that

outperforms existing techniques in terms of classification

tasks. Experimental results demonstrate the effectiveness

of the proposed approach in improving the accuracy of su-

pervised classification for temporal graphs while maintain-

ing reasonable computational efficiency. To the best of our

knowledge, this work is the pioneer in the merging directed

line graph and TR for classifying temporal graphs and our

main contributions are the following: (i) a comprehensive

analysis of how the removal of transitive edges affects the

classification performance of temporal graphs; (ii) introduc-

tion of a novel mapping method of temporal graphs to static

ones that outperforms existing techniques in terms of clas-

sification accuracy and running time; and (iii) a compre-

hensive evaluation using graph kernels on real-world data

sets.

This work is organized as follows. In Section 2, some

related works are described. Section 3 presents the main

concepts related to graph theory that are necessary for un-

derstanding the proposed method for classifying temporal

graphs, which is described in Section 4. A quite extensive

evaluation is given in Section 5. And finally, some conclu-

sions are drawn in Section 6.

2 Related work

In [33], the authors focus on the problem of evaluating the

relation between events in a given text, which is important

for information extraction. They argue that finding a com-

mon comparison referent at the text level is not straight-

forward and propose a shift from event-based measures to

measures on a minimal underlying temporal graph, which is

the TR of the graph of relations between event boundaries.

They support their proposal by investigating its properties

on synthetic data and a well-known temporal corpus. The

authors aim to accomplish two things: to find a graph that

is easy to compute and to eliminate the bias introduced by

measures that do not consider the combinatorial aspect of

agreement on transitive closure graphs. In [7], the authors

proposed a method for analyzing directed acyclic graphs

that take into account causality and highlight causal struc-

ture. The method is illustrated using citation networks from

academic papers, patents, and US Supreme Court verdicts.

The proposed approach is based on TR to remove unnec-
essary edges from a directed acyclic graph, which reveals

the fundamental causal structure of the network. The au-

thors have demonstrated how TR can identify differences

in citation practices among different areas and can correct

for the effect of a document’s age on its citation count. Fi-

nally, the authors used TR to analyze null models of citation

networks to illustrate the lack of causal structure in these

models. Moreover, from the proposed method, it was pos-

sible to see that TR helped to reveal the causal skeleton

of the network, after which standard network analysis tools

may be used to analyze the network.

In [27], the authors have proposed a method for repre-

senting and analyzing temporal event data using weighted

temporal event graphs, which are directed acyclic graphs

where nodes represent events, and edges represent tempo-

ral orderings between the events. The weights of the edges

capture the temporal distances between the events. To con-

struct the graphs, the authors first constructed a directed

graph of all possible temporal orderings between events.

This graph can contain many transitive edges, which are

4 Carolina Jerônima et al.

edges that are implied by other edges in the graph and they

used TR to simplify the graph and remove these transi-

tive edges being easier to analyze and interpret. They also

demonstrated the effectiveness of the weighted temporal

event graphs approach on real-world datasets from social

media and finance.

In [9], the authors have addressed the challenge of de

novo genome assembly (computational biology), which in-

volves decoding the sequence of an unknown genome from

short sequences. They introduced new distributed-memory

parallel algorithms for overlap detection and layout sim-

plification steps of genome assembly. The algorithms are

based on linear-algebra operations over semirings using 2D

distributed sparse matrices, which reduces the need for dif-

ferent data structures in different steps of genome assembly.

The proposed approach includes a novel distributed mem-

ory algorithm for the TR of the overlap graph, which simpli-

fies the graph and makes it easier to resolve inconsistencies

and create contigs.

Most related works have specific applications and datasets

in mind, such as information extraction from text, citation

networks, and social media/finance data. In contrast, this

work aims to provide a more generalized approach appli-

cable to a wider range of classification tasks on real-world

datasets, considering the mapping of temporal graphs to

static graphs and the impact of transitive reduction out-

performing the existing techniques in terms of classification

accuracy.

3 Fundamental concepts

Several definitions to model formally discrete temporal graphs

are proposed in the literature. In [36], timed evolving graphs

are defined as a system G′ composed by a graph G = (V,E),

an ordered sequence of its subgraphs Sg = (G1, G2, · · · , Gt),

then G′ = (G,Sg). The edge weights represent the traver-

sal time. This notation is useful when one wants to predict

the topology dynamics at different time intervals since the

paths are restricted to never move into edges that existed

only in past subgraphs. Similar to the previous definition,

the authors in [31] defined a temporal graph by a sequence

of time windows of snapshots of the network at that time

interval. This work uses the definition proposed in [22] con-

sidering temporal graphs with edges existing at specific in-

tegral points in it and node labels. This definition allows us

to model the problem, transforming it into static graphs to

apply transitive reduction.

State-of-the-art techniques for temporal graph classifica-

tion make use of graph kernels to compare different graphs.

When graphs are represented as sets of features, such as

node or edge attributes, important structural information

about the graphs is lost, such as the presence of cycles,

paths, or other higher-level patterns. Graph kernels, on the

other hand, capture this structural information by comput-

ing a similarity score between pairs of graphs based on the

graph structure, without requiring explicit feature represen-

tations. However, classical graph kernels can only be applied

to static graphs. For temporal graph classification, temporal

graphs are first mapped into static graphs before applying

the kernels for classification. There are some mapping meth-

ods shown in [14], [17], and [35]. One of the best methods,

in terms of temporal graph classification, to map temporal

graphs into static graphs is called Direct Line Graph [21].

The fundamental concepts about temporal graphs, graph

kernels, transitive reduction, and directed line graph are

given in this section.

3.1 Temporal Graph

Let G = (V,E) be an undirected (static) graph in which

V is a finite set of vertices and E a finite set of undirected

edges defined by E ⊆ {{u, v} ⊆ V | u 6= v}. A labeled,

undirected (static) graph (G, l) is a pair of an undirected

graph and a labeling function l : V ∪ E 7→ Σ that assigns

a label to each vertex or edge of G, in which Σ is a finite

alphabet. In a directed graph the set of edges E is defined by

E ⊆ {(u, v) ∈ V ×V | u 6= v}. A (static) walk in a graph G

is an alternating sequence of vertices and edges connecting

consecutive vertices, but for simplification of the notation,

we omit the edges. The length of a walk (v1, v2, · · · , vk+1)

is k.

Now, let G = (V,E) be a temporal graph in which V

is a finite set of vertices and E is a finite set of undirected

temporal edges e = ({u, v}, t) with u and v in V , u 6= v

and the availability time (or time stamp) t ∈ N. A la-

beled, undirected, temporal graph G = (V,E, l′) consists

of a temporal graph G = (V,E) and a labeling function

l′ : V ∪ T 7→ Σ that assigns a label to each vertex at

each time step t ∈ T = 1, . . . , tmax + 1 with tmax being

the largest timestamp of any e ∈ E.

For a temporal graph the number of edges is not polyno-

mially bounded by the number of vertices. A temporal walk

of length k is an alternating sequence of vertices and tempo-

ral edges (v1, e1 = (v1, v2, t1), v2, · · · , ek = (vk, vk+1, tk), vk+1)

such that ti < ti+1 for 1 ≤ i < k. Moreover, for a tempo-

ral walk, the waiting time at vertex vi with 1 < i ≤ k is

ti − (ti−1 + 1). The set of temporal walks (of length k) in

a temporal graph G is denoted by Wtmp(G) (W k
tmp(G)).

Finally, we define the function L that maps a temporal

walk w to the label sequence L(w) = (l(v1, t1), l(v2, t1 +

1), l(v2, t2), l(v3, t2 + 1), · · · , l(vk, tk), l(vk+1, tk + 1)).

3.2 Transitive Reduction

Let G = (V,E) be a directed graph with vertex set V and

edge set E. A (directed) path from vertex u to vertex v in a

A novel method for temporal graph classification based on transitive reduction 5

graph G is a walk from u to v without repetition of vertices.

The TR of G is another directed graph G′ = (V,E′) such

that:

– G′ has the same vertex set V as G.

– For every pair of distinct vertices u, v ∈ V , if there is

a directed path from u to v in G, then there is also a

directed path from u to v in G′.

– G′ has the minimum number of edges among all graphs

satisfying the first two conditions.

To define E′, we first define the relation R on V as

follows: for u, v ∈ V , uRv if and only if there is a directed

path from u to v in G. Then, the transitive closure of R is

the smallest transitive relation R′ on V such that R ⊆ R′.

We can define the edge set E′ = {(u, v) ∈ E : u¬R′v}.
In other words, E′ contains only the edges in E that are

not necessary for maintaining the reachability relation in G.

The resulting graph G′ = (V,E′) is the transitive reduction

of G [1]. The transitive reduction is well-defined only for

DAGs.

The complexity of the transitive reduction algorithm de-

pends on the size and structure of the input graph. Gen-

erally, the algorithm has a worst-case time complexity of

O(n3), in which n is the number of vertices in the graph.

However, several optimizations and heuristics can be ap-

plied to improve the performance of the transitive reduc-

tion algorithm in practice. For example, the algorithm can

be modified to use a breadth-first search instead of a depth-

first search, which reduces the worst-case time complexity

to O(n2 log n) for sparse graphs. In addition, the algorithm

can be parallelized to take advantage of multi-core pro-

cessors, or specialized hardware such as GPUs, to further

improve performance. A comparison (considering time and

space complexity) of several algorithms on TR computation

is presented in [32].

3.3 Graph Kernels

A graph kernel is a function k : G×G 7→ R that maps pairs

of graphs to a real number representing the dissimilarity be-

tween two graphs. Graph kernels need to have some proper-

ties: (i) symmetry – k(G1, G2) = k(G2, G1) for all graphsG1

and G2; (ii) positive semi-definiteness – k(G1, G2) ≥ 0 for

all pairs of graphs G1 and G2, and k(G1, G2) = 0 if and only

if G1 = G2; and (iii) compositional – for any function f :

V 7→ R, the kernel kf (G1, G2) =
∑

u,v∈V f(u)f(v)kG(u, v)

is also a valid kernel, where kG(u, v) is the kernel value be-

tween nodes u and v in the graphs G1 and G2. We briefly

summarize two well-known kernels for static graphs.

The Graphlet kernel computes the similarity between

two graphs counting the occurrences of graphlets of different

sizes. A k-graphlet is a connected subgraph H of G with k

vertices, denoted by H ∈ Gk. More formally, let G be a

graph with vertex set V (G) and edge set E(G), and let Gk

be the set of all k-graphlets of G. The graphlet degree vector

of G is a vector of counts of each k-graphlet in G, denoted

by gk(G) = (g1(G), g2(G), ..., g|Gk|(G)). The graphlet kernel

between two graphs G and H is then defined as the inner

product of their graphlet degree vectors:

K(G,H) =
∑
k

Φ(k)gk(G) · gk(H) (1)

in which Φ(k) is a weighting function that assigns different

weights to graphlets of different sizes, and · denotes the

inner product between two vectors, see [29] for more.

The Weisfeiler-Lehman subtree kernel is a kernel func-

tion that computes the similarity between two graphs based

on their shared subtrees. The Weisfeiler-Lehman subtree

kernel proceeds iteratively, refining a labeling function for

the vertices of each graph using information about the local

neighborhood of each vertex [28]. At each iteration t, the

labeling function ht : V 7→ Nk maps each vertex v ∈ V

to a vector of k integer labels that encode the frequency of

certain local subtrees in the neighborhood of v.

kWL(G1, G2) =

∞∑
t=0

αt
∑
v∈V

h
(1)
t (v) · h(2)t (v) (2)

in which h
(1)
t (v) and h

(2)
t (v) are the label vectors for vertex

v in graphs G1 and G2 at iteration t, respectively. The pa-

rameter α is a damping factor that controls the weight given

to iterations at different depths in the subtree hierarchy.

3.4 Directed Line Graph

A line graph of a static graph G is a graph whose vertices

are the edges of G that are connected if they share a vertex

in G. The authors in [22] used DL to encode the temporal

information in a study of the dissemination process. Each

temporal edge is represented by two vertices and a temporal

walk can be performed, since a walk in the DL graph is re-

lated to the temporal walks in the original temporal graph

having the same label sequence, being able to model waiting

times and keeping the temporal information. Following [22],

Directed line graph expansion (DL) can be defined as fol-

lows: given a temporal graph (G, l), the directed line graph

expansion DL(G, l) = (G′, l′) in which G′ = (V ′, E′) is

the directed graph, where every temporal edge ({u, v}, t) is

represented by two vertices nt−→uv and nt−→vu and there is an

edge from nt−→uv to ns−→xy if v = x and t < s. For each vertex

nt−→uv , the label l′
(
nt−→uv

)
= (l(u, t), l(v, t+1)) is set. Figure 2

shows an example of the directed line transformation. The

edge value is related to waiting time: if the previous node

edges are consecutive (e.g., edges 2 and 3 in Figure 2a),

then there is no waiting time between edges, represented

by value 1, otherwise, 0 is used.

6 Carolina Jerônima et al.

a

b c

3

7

2

(a)

ba ab

bc

cb

ca ac

0

1

0

(b)

Fig. 2: Example of directed line transformation. The walk

(n2ca, n
3
ab, n

7
bc) of length 2 in (b) corresponds to the temporal

walk (c,(c, a, 2), a,(a, b, 3), b,(b, c, 7), c) of length 2 in

the temporal graph (a) [22].

4 Transitive reduction on temporal graphs

For decreasing the size of graphs and keeping just one path

between vertices, if there exists, we can apply transitive

reduction. Here, we will study the impact of TR on tem-

poral graphs. For that, temporal graphs are mapped to

static graphs so that conventional static kernels, for exam-

ple, graphlet or Weisfeiler-Lehman subtree kernel can be

applied.

In [21], the authors have proposed different methods

for mapping temporal graphs into static ones. The DL ap-

proach outperformed other methods capable of fully encod-

ing the temporal information. As in the DL transformation

the edges are vertices, and the number of vertices is |E|.
The maximal number of edges is reached when each vertex

of the original temporal graph for every incoming edge can

be combined with all outgoing edges [21], then the number

of edges in the DL is O(|E|2) leading to a quadratic blowup

with regard to the number of temporal edges. Proposition 1

shows that the conversion of a temporal graph to DL leads

to a DAG, then we are able to apply the TR algorithm to

deal with the size of edges.

Proposition 1 (Directed line graph) Let (G, l) be a tem-

poral graph. The resulting DL(G, l) is a Directed acyclic

graph (DAG).

Proof: Suppose there exists a directed cycle inDL(G, l). Let

nt−→uv be a vertex on the cycle with the earliest timestamp t.

Let ns−→xy be the last vertex of the cycle that connects nt−→uv .

Since there is a path from ns−→xy to nt−→uv , we know that y = u

and s > t. However, nt−→uv represents a temporal edge (u, v, t),

and ns−→xy represents a temporal edge (x, y, s). Therefore, u =

y = x and t > s. But this contradicts the fact that nt−→uv has

the earliest timestamp on the cycle. Therefore, there are no

directed cycles in DL(G, l), and DL(G, l) is a DAG. �
To the best of our knowledge, this work proposes a novel

methodology for temporal graph classification that makes

use of directed line graph and TR. Figure 3 outlines the pro-

Temporal
graph

Temporal
graph

Directed
Line graph

Generate
graph kernels

Generate
graph kernels

Classification
task

Classification
task

Transitive
reduction

Directed Line
+ transitive

reduction

Fig. 3: Outline of the temporal graph classification method

by using TR.

posed method together with a baseline method [21]. Three

different possibilities can be derived from Figure 3. The first

one, called baseline, is represented by the gray blocks in Fig-

ure 3, in which temporal graphs are mapped to static graphs

using the DL transformation. Then, the normalized Gram

Matrix is computed using two graph kernels (Graphlet and

Weisfeiler-Lehman subtree kernel) for the learning task. In

the second, called TR-based method, represented by gray

and red blocks in Figure 3, we propose to apply TR after

the DL transformation in order to reduce the size of these

graphs. The impact of TR on classification accuracy and

running time compared to baseline is analyzed in the ex-

perimental results. And finally, we propose also a method,

called DLTR-based method (illustrated by yellow blocks),

which is an extension of the TR-based method that com-

bines the DL and TR methods. We detail below how this

extension is realized.

There are different ways to remove transitive edges, but

the TR algorithm used in the TR-based method removes

all transitive edges, which is more complex, performing a

depth-first search or breadth-first search on the graph, and

computationally expensive for large graphs. Additionally,

the algorithm requires the use of data structures such as

stacks or queues to keep track of the visited nodes and the

order in which they were visited. The concept in the DLTR-

based method is to remove a certain amount of transitive

edges using the simplest implementation of the TR algo-

rithm. The basic idea of the TR algorithm is that for each

set of three nodes (x, y, z) ∈ V ′ if there is a path xy, yz

we can remove xz if it exists. However, as shown in Propo-

sition 2, it is impossible to have transitive edges with only

three nodes, it is only possible with at least four nodes,

as in Figure 4b. Having more than three loops can be time-

consuming and does not guarantee the removal of transitive

edges.

Proposition 2 Let DL(G, l) a directed line expansion of

a temporal graph (G, l). If there exists a transitive edge in

A novel method for temporal graph classification based on transitive reduction 7

a b c d

1

2

3

4

5

(a)

ab ba ac ca ad

(b)

ba ca ad

(c)

Fig. 4: Example of temporal graph (a), DL conversion in (b)

and DL conversion with temporal graph smoothing (c). The

dotted lines represents transitive edges that can be removed.

DL(G), this transitive edge involves at least four consecu-

tive nodes in DL(G, l).

Proof: Let v1 = nt−→uv , v2 = ns−→vx and v3 = np−→xv with t < s < p

be 3 connected vertices, v1, v2, v3 ∈ V ′ and u, v, x ∈ V .

To create a transitive edge we need to connect v1 with v3.

However, this leads to a contradiction, as v1 corresponds to

a temporal edge (u, v, t) and v3 corresponds to a temporal

edge (x, v, p) and they are not consecutive in (G, l) since

the temporal edge v3 starts with vertex x not v. To be able

to construct a transitive edge in DL(G, l) we need to create

a temporal edge starting with v and ending with u with a

time higher than p. With this we create a vertex v4 = nn−→vu,

n > p connected to v3 and now we are able to create a

transitive edge from v1 to v4. �
To deal with this, we have used a graph simplification

(that we denote temporal graph smoothing), adapted from

graph smoothing. Graph smoothing, also known as smooth-

ing away or smoothing out, is the process of replacing edges

incident at a vertex of degree 2 by a single new edge and

removing the vertex. When running the DL algorithm, each

temporal edge is transformed into a node. Before creating

the node, for each edge nt−→uv we check if there exists a np−→vu
with p > t. This means that, instead of creating two con-

secutive nodes, we create just one that corresponds to the

last temporal edge np−→vu. The label of a node in the directed

line graph is a combination of the labels of its correspond-

ing edges in the temporal graph as shown in section 3.4.

Maintaining the same idea, the node label that corresponds

to the first temporal edge is combined with the one of the

last node. For example, in Figure 4c the nodes ab and ac

were not created since for ab, ba exists and for ac, ca exists.

The neighbors’ edges from the first temporal edge are

propagated to the last one to keep the structure. The result

is a compact graph (see Figure 4c as an example), and the

TR algorithm can be applied to remove the transitive edges

(dotted line in Figure 4c) in a much faster way. In the next

section, we will study the impact of these two novel meth-

ods (TR- and DLTR-based methods) on both classification

accuracy and efficiency.

5 Experiments

In this Section, we describe the experiments and the ob-

tained results taking into account real world datasets.

5.1 Datasets

In order to provide a comparative analysis between the dif-

ferent strategies described before, we have used six differ-

ent databases provided by TUDataset [19]. This benchmark

provides temporal graph classification datasets derived from

Tumblr, Dblp, Facebook as well as contacts between students

at MIT, in a Highschool, and visitors at the Infectious exhi-

bition, for dissemination process study. For each dataset, a

dissemination process simulation was done, in which nodes

are infected at different time instants, providing two classi-

fication tasks for each dataset. The first task involves dis-

criminating between temporal graphs with vertex labels re-

sulting from a dissemination process and those without. To

accomplish this, the authors ran a Susceptible-infected (SI)

simulation with fixed parameters on half of the dataset and

used it as the first class. The second class was made up of

the remaining graphs. For each graph in the second class,

the authors counted the number of infected vertices, reset

the labels, and then randomly infected a number of vertices

at a random time. The second task involves discriminating

between temporal graphs that differ in the dissemination

process itself. For this task, the authors ran the SI simula-

tion with different parameters for each of the two subsets.

For both subsets, I = 0.5 (initial infection rate), but for

the first subset, the authors set p = 0.2 (infection proba-

bility), and for the second subset, p = 0.8. The simulation

runs repeatedly until at least |V | × I vertices are infected

or no more infections are possible, for example, if a graph

has 100 vertices and the initial infection rate is set to 0.5,

then initially 50 vertices are infected. In order to stop the SI

simulation, at least 50 × 0.5 = 25 vertices (i.e., 50% of the

total number of vertices) need to be infected. The simula-

tion continues until either this condition is met or no more

infections are possible.

5.2 Graph Kernels

As a baseline we use the 3-node Graphlet (GL) and the

Weisfeiler-Lehman subtree (WL) kernels on static graphs

obtained by interpreting the timestamps as discrete edge

labels, and assigning to each vertex the concatenated se-

quence of its labels. The source code is provided by [19].

8 Carolina Jerônima et al.

Table 1: Classification accuracy in percent and standard

deviation for the first classification task. DL, is only the

directed line approach, DL + TR, is the transitive reduc-

tion algorithm applyed after the directed line transforma-

tion and DLTR, is the TR algorithm applied at the same

time of DL.

Datasets

Kernel Highschool Infectious Tumblr Dblp Facebook MIT

Baseline

DL-GL 93.83±0.8 97.05±0.8 89.37±1.0 96.39±0.4 92.31±0.3 OOM
DL-WL 97.44±0.4 98.60±0.3 93.59±1.0 98.42±0.3 95.89±0.2 OOM

TR-based

DL-GL 96.94±0.9 95.80±1.1 92.33±0.8 96.91±0.2 93.74±0.2 OOM
DL-WL 97.45±0.9 98.10±0.5 93.88±0.6 98.90±0.1 96.07±0.2 OOM

DLTR-based

DL-GL 95.77±0.6 96.30±0.6 93.26±0.5 97.23±0.3 94.32±0.2 84.04±2.7

DL-WL 98.11±0.7 97.80±0.4 93.50±0.8 98.60±0.2 95.06±0.4 87.85±1.8

5.3 Experimental Setup

The normalized Gram matrix was calculated for each ker-

nel and then we used the C-SVM implementation of LIB-

SVM [6] to determine the classification accuracies. We per-

formed 10-fold cross-validation to select the C parameter

from the range of 10−3, 10−2, ..., 102, 103 on the training

folds. We repeated the 10-fold cross-validation ten times

with different random folds to obtain the average accura-

cies and standard deviations. The number of iterations for

the Weisfeiler-Lehman subtree kernel (from 0 to 5) were se-

lected through 10-fold cross-validation. A NetworkX imple-

mentation of a transitive reduction will be used in TR-based

method [10].

5.4 Evaluation and Discussion

Table 1 shows that TR algorithm improved the classifica-

tion accuracy. This improvement is more significant when

the dataset has a bigger quantity of edges (Highschool and

MIT). Reducing the graph size can help to eliminate noise

and irrelevant information from the data, making it easier

for the SVM to identify the patterns and features that are

truly relevant to the classification task. This can lead to

a more accurate classification because the SVM is working

with a more focused and relevant set of features. Addition-

ally, reducing the graph size can also reduce the risk of

overfitting, which occurs when a model becomes too com-

plex and starts to fit the noise in the data instead of the

underlying patterns [26]. Overfitting occurs when a model

fits too closely to the training data and fails to generalize

to new data. In the case of graph kernels, the size and com-

plexity of the graph can affect the performance of the kernel

function, and a smaller graph can improve the kernel’s abil-

ity to generalize to new data by reducing the number of

possible patterns or subgraphs that can be learned from

the training data. MIT is a large dataset with more than 62

million edges. When we tried to run the Baseline and TR-

based method we got OOM (Out of memory), being able to

run just the DLTR-based method.

For the second classification task, Table 2 shows that

reducing the size of the graph also improves accuracy, but

when we do the temporal smoothing process, the graphs

lose some relevant information about the graph structure

for classification. However, the accuracy of the DLTR-based

method is very similar to the baseline when the overall

quantity of edges is not high, leading to consider a slight

loss of accuracy. In general, the second classification task

poses a greater challenge for the temporal approaches that

reach lower accuracy than the first classification task. Es-

pecially, the MIT data set seems to be hard. In Figure 5 we

can see that TR improved accuracy compared to the base-

line and when compared to the DLTR-based (see the third

plot), the accuracy is quite similar, gaining in running time.

As we can see in Table 3, the size of the graphs de-

creases when the transitive reduction algorithm is applied,

which was expected. The reduction in size is most signif-

icant in the DLTR-based method, in which both the line

graph conversion and transitive reduction are applied si-

multaneously. In TR-based method, the reduction in edge

count varies depending on the dataset, but it is significant

in the case of the Tumblr and Highschool dataset, where

the number of edges decreased from 412,892 to 205,357 and

from 2,079,062 to 360,895. This is a reduction of almost

50% and 83% in edge count, respectively. The reduction in

the number of vertices is zero, as transitive reduction does

not affect the number of vertices in a graph. Compared to

the TR-based method, the DLTR-based method resulted in

a further reduction in the number of edges and vertices for

all datasets. The reduction in the number of edges is most

significant in the case of the Highschool dataset, where the

number of edges decreased from 360,895 to 252,081, which

is a further reduction of about 30%. The reduction in the

number of vertices is also significant for all datasets, with

reductions ranging from about 3% to almost 70% for the

MIT dataset. Overall, with DLTR-based method we can

significantly reduce their size while still maintaining their

essential properties for classification tasks. The reduction in

Table 2: Classification accuracy in percent and standard

deviation for the second classification task.

Datasets

Kernel Highschool Infectious Tumblr Dblp Facebook MIT

Baseline

DL-GL 91.05±1.9 88.10±1.9 78.56±1.5 79.68±0.7 75.86±0.4 OOM
DL-WL 87.16±1.0 80.25±1.6 75.20±2.1 77.18±0.9 80.35±0.7 OOM

TR-based

DL-GL 94.61±1.0 83.85±1.8 80.15±1.1 80.09±0.7 74.35±0.3 OOM
DL-WL 90.61±1.5 81.00±1.2 77.85±0.8 79.77±0.8 82.16±0.7 OOM

DLTR-based

DL-GL 88.22±0.8 82.45±1.6 79.91±1.4 78.33±0.6 72.81±0.5 60.61±2.7

DL-WL 89.11±1.1 79.90±2.4 79.04±0.9 77.27±0.4 77.20±0.6 59.91±4.2

A novel method for temporal graph classification based on transitive reduction 9

Table 3: Graph size in terms of vertice and edge overall

quantity.

Datasets

Size Highschool Infectious Tumblr Dblp Facebook MIT

Baseline

Sum |E| 2,079,062 918,513 412,892 1,097,872 851,165 62,923,589
Sum |V | 98,066 91,944 74,520 241,674 267,673 142,508

TR-based

Sum |E| 360,895 380,920 205,357 777,212 516,631 -
Sum |V | 98,066 91,944 74,520 241,674 267,673 142,508

DLTR-based

Sum |E| 252,081 436,015 165,119 839,755 531,431 170,080
Sum |V | 69,197 71,157 63,971 196,154 234,983 74,801

size can be more or less significant depending on the dataset,

but it is generally more significant for larger graphs.

Table 4 shows that the time spent to perform transitive

reduction separately is significantly longer than the time

necessary to convert the temporal graph to a directed line

graph in both baseline and DLTR-based. This is partic-

ularly evident in the Facebook dataset, in which transi-

tive reduction takes over 9000 milliseconds while baseline

and DLTR-based take only 90 and 248 milliseconds, re-

spectively. However, it is important to note that TR-based

method takes longer than baseline and DLTR-based method

in all datasets. This is likely due to the additional step of

performing transitive reduction on the already converted

directed line graph. Overall, we can see that DLTR-based

method is the most efficient in terms of both accuracy and

time, as it combines the conversion and transitive reduc-

tion steps, resulting in faster processing time and improved

accuracy.

In Table 5, the time required for the classification step of

the three methods is presented. One can see that the DL-GL

kernel is faster than the DL-WL kernel for all datasets and

all methods. This happens because the Weisfeiler-Lehman

kernel involves the computation of the neighborhood of nodes

and updating labels iteratively, while the graphlet kernel

only counts the number of isomorphic graphlet subgraphs,

which could also contribute to the speed difference. Regard-

ing the running times, the DLTR-based method is generally

slower than the other two methods, which is also expected

as it involves an additional step of transitive reduction and

temporal graph smoothing. However, the difference in run-

ning times between TR-based method and DLTR-based

method is not significant in most cases, except for the MIT

dataset in which DLTR-based method is much faster than

Table 4: Mapping time in milliseconds for the baseline, the

TR-based method plus TR and DLTR-based method run-

ning time.

Datasets

Highschool Infectious Tumblr Dblp Facebook MIT

DL + (TR) 126 + (31510) 68 + (15398) 28 + (2380) 115 + (4737) 90 + (9134) 4939 + (OOM)

DLTR 147 183 62 298 248 522

Table 5: Time for classification performance of the three

methods, in seconds.

Datasets

Kernel Highschool Infectious Tumblr Dblp Facebook MIT

DL

DL-GL 33.07 9.08 4.67 12.44 16.36 –
DL-WL 13.57 9.22 11.41 32.84 56.06 –

DL + TR

DL-GL 2.59 3.07 2.74 9.89 13.57 –
DL-WL 7.68 7.39 10.48 32.53 54.25 –

DLTR

DL-GL 2.29 4.16 2.80 10.56 12.77 1.60
DL-WL 6.39 7.01 10.04 30.98 55.38 5.38

TR-based. Overall, we can conclude that the DLTR-based

method offers improved accuracy at the cost of longer run-

ning times compared to other methods, but the difference

in running times is not significant in most cases.

Based on Figure 6, it is evident that the overall time for

temporal graph classification varies among different meth-

ods utilizing two different kernels. The mapping time for DL

and DLTR appears negligible in comparison to the time con-

sumed by classification and transitive reduction processes.

Due to the minimal contribution of mapping time, the col-

ors representing DL and DLTR are nearly imperceptible.

Notably, the DLTR-based method outperforms the others

in terms of speed, as indicated by the significantly lower

classification time.

6 Conclusion

This work presented a novel method for improving the clas-

sification accuracy of temporal graphs by combining the

line graph transformation and transitive reduction tech-

niques. Experimental results demonstrate that reducing the

size of the graph by removing redundant edges and nodes

can lead to improved classification accuracy, especially for

larger graphs, since real-world graph datasets can be incred-

ibly large and complex, containing millions or even billions

of nodes and edges like transportation networks, financial

transaction networks, and communication networks. The

proposed method achieved similar or better accuracy com-

pared to the state-of-the-art methods while also being com-

putationally more efficient. Moreover, the proposed method

provides a significant reduction in the size of the graph,

making it more manageable for further analysis and visual-

ization. Finally, this work contributes to the development of

graph-based machine learning methods for temporal graph

data and can be applied to a wide range of temporal graph

data sets, such as social networks and communication net-

works, to improve their classification performance. Thus,

this work findings have the potential to benefit a wide range

10 Carolina Jerônima et al.

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Accuracy (baseline)

A
cc

u
ra

cy
(T

R
-b

a
se

d
)

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Accuracy (TR-based)
A

cc
u

ra
cy

(D
L
T

R
-b

a
se

d
)

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Accuracy (baseline)

A
cc

u
ra

cy
(D

L
T

R
-b

a
se

d
)

Fig. 5: Scatter plots to show the accuracy relationship between two different methods. The dots are accuracy in different

datasets and using different graph kernels for classification.

Fig. 6: Temporal Graph Classification time of Highschool

data set (ms).

of applications, from predicting disease outbreaks to detect-

ing online fraud.

Future research opportunities in this area include prac-

tical implementation and application of different transitive

reduction techniques to determine their real-world perfor-

mance. Additionally, exploring the effectiveness of the method

on graphs with multiple edge types or different structures

and investigating its potential for classification tasks in tem-

poral graph databases, such as video classification, where

each video can be modeled as a temporal graph, can be

valuable. In conclusion, the method proposed is a promising

avenue for future research on temporal graph classification

and has the potential to be further optimized and improved

in future studies.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduc-
tion of a directed graph. SIAM Journal on Computing 1(2),
131–137 (1972)

2. Akhtar, N., Ahamad, M.V.: Graph tools for social network
analysis. In: Research Anthology on Digital Transformation,
Organizational Change, and the Impact of Remote Work, pp.
485–500. IGI Global (2021)

3. Amara, A., Hadj Taieb, M.A., Ben Aouicha, M.: Multilingual
topic modeling for tracking covid-19 trends based on facebook
data analysis. Applied Intelligence 51(5), 3052–3073 (2021)

4. Barunik, J., Ellington, M., et al.: Dynamic networks in
large financial and economic systems. arXiv preprint
arXiv:2007.07842 (2020)

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.:
Time-varying graphs and dynamic networks. International
Journal of Parallel, Emergent and Distributed Systems 27(5),
387–408 (2012)

6. Chang, C.C., Lin, C.J.: Libsvm: a library for support vec-
tor machines. ACM transactions on intelligent systems and
technology (TIST) 2(3), 1–27 (2011)

7. Clough, J.R., Gollings, J., Loach, T.V., Evans, T.S.: Transi-
tive reduction of citation networks. Journal of Complex Net-
works 3(2), 189–203 (2015)

8. Dubois, V., Bothorel, C.: Transitive reduction for so-
cial network analysis and visualization. In: The 2005
IEEE/WIC/ACM International Conference on Web Intelli-
gence (WI’05), pp. 128–131. IEEE (2005)

9. Guidi, G., Selvitopi, O., Ellis, M., Oliker, L., Yelick, K., Buluç,
A.: Parallel string graph construction and transitive reduction
for de novo genome assembly. In: 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp.
517–526. IEEE (2021)

10. Hagberg, A.A., Schult, D., Swart, P.: Networkx. https://

networkx.github.io/ (2008–). Accessed: May 8, 2023

11. Harary, F., Gupta, G.: Dynamic graph models. Mathematical
and Computer Modelling 25(7), 79–87 (1997)

12. Huang, S., Fu, A.W.C., Liu, R.: Minimum spanning trees in
temporal graphs. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 419–
430 (2015)

13. Karaivanov, A.: A social network model of covid-19. Plos one
15(10), e0240,878 (2020)

14. Kostakos, V.: Temporal graphs. Physica A: Statistical Me-
chanics and its Applications 388(6), 1007–1023 (2009)

15. Meng, X., Li, W., Peng, X., Li, Y., Li, M.: Protein interaction
networks: centrality, modularity, dynamics, and applications.
Frontiers of Computer Science 15, 1–17 (2021)

https://networkx.github.io/
https://networkx.github.io/

A novel method for temporal graph classification based on transitive reduction 11

16. Mesbahi, M.: On a dynamic extension of the theory of graphs.
In: Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301), vol. 2, pp. 1234–1239. IEEE (2002)

17. Michail, O.: An introduction to temporal graphs: An algorith-
mic perspective. Internet Mathematics 12(4), 239–280 (2016)

18. Michail, O., Spirakis, P.G.: Traveling salesman problems in
temporal graphs. Theoretical Computer Science 634, 1–23
(2016)

19. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P.,
Neumann, M.: Tudataset: A collection of benchmark datasets
for learning with graphs. arXiv preprint arXiv:2007.08663
(2020)

20. Nonejad, N.: An overview of dynamic model averaging tech-
niques in time-series econometrics. Journal of Economic Sur-
veys 35(2), 566–614 (2021)

21. Oettershagen, L.: Temporal graph algorithms. Ph.D. thesis,
Universitäts-und Landesbibliothek Bonn (2022)

22. Oettershagen, L., Kriege, N.M., Morris, C., Mutzel, P.: Clas-
sifying dissemination processes in temporal graphs. Big Data
8(5), 363–378 (2020)

23. Ozcan, S., Astekin, M., Shashidhar, N.K., Zhou, B.: Centrality
and scalability analysis on distributed graph of large-scale e-
mail dataset for digital forensics. In: 2020 IEEE International
Conference on Big Data (Big Data), pp. 2318–2327. IEEE
(2020)

24. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling
qualitative, abstract, and scalable modeling of biological net-
works. Nature communications 11(1), 4256 (2020)

25. Pradhyumna, P., Shreya, G., et al.: Graph neural network
(gnn) in image and video understanding using deep learning
for computer vision applications. In: 2021 Second Interna-
tional Conference on Electronics and Sustainable Communi-
cation Systems (ICESC), pp. 1183–1189. IEEE (2021)

26. Procházka, P., Mareš, M., Dědič, M.: Scalable graph size re-
duction for efficient gnn application (2022)

27. Saramäki, J., Kivelä, M., Karsai, M.: Weighted temporal event
graphs. Temporal Network Theory pp. 107–128 (2019)

28. Schulz, T.H., Horváth, T., Welke, P., Wrobel, S.: A gen-
eralized weisfeiler-lehman graph kernel. Machine Learning
111(7), 2601–2629 (2022)

29. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K.,
Borgwardt, K.: Efficient graphlet kernels for large graph com-
parison. In: Artificial intelligence and statistics, pp. 488–495.
PMLR (2009)

30. Tadić, B.: Dynamics of directed graphs: the world-wide web.
Physica A: Statistical Mechanics and its Applications 293(1-
2), 273–284 (2001)

31. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal
distance metrics for social network analysis. In: Proceedings
of the 2nd ACM workshop on Online social networks, pp. 31–
36 (2009)

32. Tang, X., Zhou, J., Qiu, Y., Liu, X., Shi, Y., Zhao, J.: One
edge at a time: A novel approach towards efficient transi-
tive reduction computation on dags. IEEE Access 8, 38,010–
38,022 (2020)

33. Tannier, X., Muller, P.: Evaluating temporal graphs built from
texts via transitive reduction. Journal of Artificial Intelligence
Research 40, 375–413 (2011)

34. Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R.,
Wang, C., Fu, H., Ma, Q., Xu, D.: scgnn is a novel graph neu-
ral network framework for single-cell rna-seq analyses. Nature
communications 12(1), 1–11 (2021)

35. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path
problems in temporal graphs. Proceedings of the VLDB En-
dowment 7(9), 721–732 (2014)

36. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest,
fastest, and foremost journeys in dynamic networks. Inter-
national Journal of Foundations of Computer Science 14(02),
267–285 (2003)

37. Yang, S.: Networks: An introduction by mej newman: Oxford,
uk: Oxford university press. 720 pp., $85.00. (2013)

38. Zhang, X.M., Liang, L., Liu, L., Tang, M.J.: Graph neural net-
works and their current applications in bioinformatics. Fron-
tiers in genetics 12 (2021)

39. Zhu, Y., Ma, J., Yuan, C., Zhu, X.: Interpretable learning
based dynamic graph convolutional networks for alzheimer’s
disease analysis. Information Fusion 77, 53–61 (2022)

	Introduction
	Related work
	Fundamental concepts
	Transitive reduction on temporal graphs
	Experiments
	Conclusion

