
03

TECHNICAL
REPORT 2023

Hierarchical Graph Convolutional
Networks for Image Classification

(Submitted – conference – BRACIS)

03

TECHNICAL
REPORT 2023

Hierarchical Graph Convolutional
Networks for Image Classification

(Submitted – conference – BRACIS)



03

TECHNICAL
REPORT 2023

Hierarchical Graph Convolutional
Networks for Image Classification

Citation details:
João Pedro Batistelli, Silvio Jamil F. Guimarães, Ze-
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Abstract Graph-based image representation is a promising

research direction that can capture the structure and se-

mantics of images. However, existing methods for convert-

ing images to graphs often fail to preserve the hierarchical

information of the image elements and produce sub-optimal

or poor regions. To address these limitations, we propose

a novel approach that uses a hierarchical image segmen-

tation technique to generate graphs at multiple segmenta-

tion scales, reflecting the hierarchical relationships between

image elements. We also propose and train a Hierarchical

Graph Convolutional Network for Image Classification (HG-

CIC) model that leverages the hierarchical information with

three different adjacency setups on the CIFAR-10 database.

Experimental results show that the proposed approach can

achieve competitive or superior performance compared to

other state-of-the-art methods while using smaller graphs.

Keywords Deep Learning · Graph Neural Networks ·
Image Classification.

1 Introduction

Graph-based image representation is an emerging research

area that leverages the spatial relationships between im-

age elements to model image content more effectively [16].

Graph-based approaches can enhance the understanding

of image semantics and context by incorporating domain-

specific knowledge into the learning process. Moreover, these

approaches can provide multi-scale representations of the

same image [17, 22, 23], capturing local and global infor-

mation about its structure. These advantages make graph-

based image representation appealing for various image anal-

ysis tasks.

Silvio Jamil F. Guimarães
ImScience/PUC-Minas – Belo Horizonte 31980-110, Brazil
E-mail: sjamil@pucminas.br

(a) Deer (b) Automobile (c) Ship

Fig. 1 Examples of images classified as airplanes, according to [2].

Applying machine learning algorithms to graph data

presents unique challenges due to its irregularity, variable

sizes, and diverse neighbor relationships [24]. Graph Neural

Networks (GNNs) have emerged to address these challenges,

adapting neural network architectures to process graph-

structured data effectively. GNNs capture the intricate re-

lationships and dependencies between vertices in a graph,

leveraging information from neighboring vertices and edges

to encode local and global structural information. This ap-

proach enables accurate predictions and improved gener-

alization, making GNNs ideal for tackling various graph-

based machine-learning problems.

One of the main applications of GNNs is graph-based

image analysis, which requires representing images as graphs.

However, this is a challenging task. One common possibility

in literature is to apply image segmentation methods for

partitioning the image into regions and representing each

region by a vertex in a graph [2, 9, 17, 19, 22, 23]. Despite

the simplicity of this approach, it has two important draw-

backs: (i) the dependency on the quality and quantity of

the regions produced by the segmentation algorithm; and

(ii) the hierarchical relationship between image elements

are not captured. Here we argue that this property is essen-

tial for effective image reasoning, which a graph representa-

tion must capture. It is worth mentioning that hierarchical

information could be seen as a multi-scale representation.

Figure 1 illustrates failures in image classification when the
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hierarchical structure is disregarded (all cases were classi-

fied as airplanes, using [2] representation).

To overcome the limitations of existing methods, we pro-

pose a novel approach that leverages hierarchical seg-

mentation techniques to generate graph vertices for

image classification from graph representation. Hi-

erarchical segmentation is a well-established technique in

computer vision and image processing [6,7,13], enabling the

identification of objects and regions within an image based

on their visual characteristics. Additionally, our method al-

lows incorporating hierarchical relationships between image

elements into the resulting graph, facilitating image analysis

tasks. More specifically, the idea of hierarchical segmenta-

tion is similar to generating a set of image segmentations

at different levels of detail with respect to the principles of

multi-scale image analysis [12]. By adopting this approach,

we argue that we can effectively capture the rich structural

information in the image and encode it in the resulting

graph. Thus, our proposal for image classification uses a

hierarchical segmentation method in order to capture hier-

archical information for representing image data features.

However, in some cases, while working on raw images, noise

may produce poor results in image segmentation, for that,

in this work, instead of using raw images, we generate su-

perpixels from them to produce homogeneous and concise

regions in conjunction with good object delineation. From

these superpixels, region adjacency graphs are computed for

representing superpixel images.

To evaluate the effectiveness of our proposed represen-

tation, we conducted experiments using images from the

CIFAR-10 dataset, leveraging our hierarchical segmenta-

tion technique from the superpixel images to generate graph

representations that were subsequently used to train the

Hierarchical Graph Convolutional Network for Image Clas-

sification (HGCIC) model. Test experiments demonstrated

promising results, even though the graphs used to train our

model were smaller than those utilized in other works. The

proposed approach outperformed the results obtained by

some of the state-of-the-art methods, highlighting its effec-

tiveness.

We can briefly describe the two major contributions of

this work to graph-based image analysis: (i) the proposi-

tion of a novel graph representation method that leverages

hierarchical image segmentation to capture hierarchical rep-

resentations of the underlying image structure; and (ii) the

introduction of a novel graph convolutional neural network

architecture that can extract and use the essential informa-

tion from our new graph representation.

This work is organized as follows. Section 2 presents

some related works. Section 3 describes the most important

concepts needed for understanding the proposed method.

Section 4 presents a hierarchical graph convolutional net-

work for classifying images based on superpixel graphs. Sec-

tion 5 describes the experiments and some comparative

analysis of the proposed approach to the state-of-the-art

methods. And, finally, in Section 6, we have drawn some

conclusions and present some further work.

2 Related Works

Superpixel image segmentation could be seen as a funda-

mental task in image processing that divides an image into

homogeneous regions. This process can reduce the complex-

ity of an image and provide a more efficient representation

for further analysis. By treating these regions or segments as

vertices, we can transform the image into a graph structure,

which can facilitate the use of graph-based algorithms.

A common strategy in literature for representing im-

ages as graphs is based on considering vertices as superpix-

els [2, 9, 11, 17, 20, 22]. Superpixels are groups of pixels into

perceptually meaningful regions based on similarity criteria

like color or location. This approach leverages the flexibility

of graph neural networks, which can handle irregular graphs

with different shapes and sizes. Other methods include split-

ting the images into fixed patches viewed as vertices [14] or

interpreting each pixel as a vertex [8, 20]. Some works also

explore multiscale graph (from image) representations to

achieve better graph classification performance.

Multiscale graph-image representations can capture dif-

ferent levels of details and features from the image. For

instance, in [22], the authors proposed a novel superpixel

algorithm that produces segments with a wide size distri-

bution, allowing a more flexible representation of an im-

age, as it can capture fine and coarse details. The authors

in [23] model hyperspectral images as multiple graphs with

different neighborhood scales and propose a dynamic graph

convolution operation that updates the similarity measures

among vertices by fusing feature embeddings. To the best

of our knowledge, the work in [17] is the only one that has

used a multiscale graph segmentation, in which superpixels

are obtained at several scales and different types of rela-

tions between vertices are explored to improve the model

expressiveness.

The edges of the graph are also crucial for construct-

ing the graph representation, as they enable the message-

passing mechanism of GNNs. The message-passing mech-

anism updates the feature representations of vertices by

exchanging information with neighboring vertices through

edges. One natural way to build adjacency is using a region

adjacency graph (RAG), in which edges are created between

spatial neighbors [2,22]. Another strategy is to construct k-

nearest adjacency based on the spatial and/or feature dis-

tances of the vertices, as used in [9,14]. Both methods have

shown promising results, and their choice mainly depends

on the problem requirements and the properties of the data.
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3 Theoretical Background

3.1 Graph Neural Networks

Graph neural networks (GNNs) can be divided into two

types: spatial or spectral. Spatial GNNs work directly on the

graph structure and compute vertex (and maybe edge) rep-

resentations using information from their neighbors. Spec-

tral GNNs, on the other hand, function on the graph spec-

tral domain. They utilize the eigenvectors of the graph Lapla-

cian matrix as the foundation for representing the graph

data. This work focuses solely on spatial GNNs.

The input of each GNN layer are the vertex feature vec-

tors {hu ∈ Rd | u ∈ V}, the set of edges E , and option-

ally edge feature vectors (maybe seen as weights) {wuv ∈
Rd | (u, v) ∈ E}. The result of each layer is a new vertex

representation {h′

u ∈ Rd
′

| u ∈ V}, in which the same para-

metric function is applied to each vertex given its neighbors

Nu = {v ∈ V | (u, v) ∈ E)} and on the edges incident to it,

generically given by:

h′u = fθ (hu, aggregate(hv, w
′
uv | v ∈ Nu)) (1)

in which aggregate is a permutation invariant function (like

max, min, sum), fθ is the parametric function, and w′uv is

the updated edge feature defined by:

w′uv = gθ(hu, hv, wuv) (2)

in which gθ is a distinct parametric function. Each vertex

update step is also called the message passing step since

vertices send information to their neighbors.

3.2 Residual Gated Graph Convolutional Network

According to [4], GatedGCN is a fusion of the vanilla GCN

and edge gating mechanism. In [9], the authors suggested

modifications to the GatedGCN architecture by introduc-

ing residual connections and batch normalization [15]. The

vertex update is given by:

h′u = hu + ReLU(BN(U `hu +
∑
v∈Nv

αuv � V `hv)) (3)

in which U `, V ` are linear transformations, � denotes Ha-

damard product, ReLU stands for Rectified Linear Unit,

BN represents batch normalization, and αuv are the edge

gates defined by:

αuv =
σ(w

′

uv)∑
v′∈Nu

σ(w
′
uv′) + ε

(4)

w
′

uv = wuv + ReLU(BN(A`h`u +B`h`v + C`wuv)) (5)

in which A`, B`, C` are linear transformations, σ is the

sigmoid function, and ε is a small-fixed constant for numer-

ical stability. The edge gate in Equation 4 works as a soft

attention mechanism [9], allowing the model to learn the

importance of different vertices in a neighborhood.

3.3 Hierarchical Segmentation

Hierarchical image segmentation is a set of image segmenta-

tions at different detail levels [13]. The segmentations with

lower levels of detail can be created by merging regions from

segmentations at higher levels of detail.

Hierarchical approaches must obey the principles of multi-

scale image analysis. These principles ensure that the seg-

mentation is consistent across different levels of detail. The

causality principle defines that a contour presented at a

scale k1 should be present at any scale k2 < k1. The loca-

tion principle defines that contours should be stable because

they neither move nor deform from one scale to another [12].

Hierarchical image segmentation organizes image seg-

ments into a tree structure where each vertex represents

a different level of detail or abstraction. The highest level

of the tree represents the entire image, while lower levels

correspond to smaller and more specific sub-regions or sub-

segments. This structure provides a way to represent the

image at different levels of resolution, allowing for a better

understanding of the image’s contents.

4 Hierarchical Graph Convolutional Networks by

using Hierarchy of Superpixels

Given a finite set V , a partition of V is a set P of nonempty

disjoint subsets of V whose union is V . Any element of P,

denoted by R, is called a region of P. Given two partitions

P and P′ of V , P′ is said to be a (total) refinement of P,

denoted by P′ � P, if any region of P′ is included in a

region of P. Let H = (P1, . . . ,P`) be a set of ` partitions

on V . H is a hierarchy if Pi−1 � Pi, for any i ∈ {2, . . . , `}.

4.1 Graph Construction

Let G = (V,E) be a RAG computed from the superpix-

els in which the set V represents the superpixels and the

set E the adjacency relation between the superpixels. Let

H = (P1, . . . ,P`) be a hierarchy computed from the graph

G. Let Rj be the set of regions in the partition Pj of the

hierarchy H. Let R be set containing all regions belonging

to all partition Pj ∈ H.

Figure 2 illustrates our proposal for computing the hier-

archy from the original image. In the following, we describe

how to compute three different graphs from a given hierar-

chy. These graphs will be used as input in the learning step

of our method.

Hierarchy-based graph This graph, deoted by Gh =

(Vh, Eh), is a graph computed from the hierarchical struc-

ture H in which the set of vertices Vh is equal to the R. The

set of edges Eh is defined by Eh = {(ri, rj), (rj , ri) | ri, rj ∈
R, ri 6= rj , in which rj is the smallest region that contains

ri}.



Hierarchical GCN for Image Classification 5

Fig. 2 Pipeline for computing a hierarchy from the original im-
age.

kNN-based graph This graph, denoted byGk = (Vk, Ek),

is a graph computed from the k-nearest neighborhood of re-

gions in the hierarchical structure H in the feature space, in

which the set of vertices Vk is equal to the R. Let W (V ) =

{w(v), ∀v ∈ V } be the set of feature vectors related to

the vertex set V . The set of edges Ek is defined by Ek =

{(ri, rj) | w(rj) is one of the k-nn of w(ri)}.

Complete-based graph This graph, denoted by Gc =

(Vc, Ec), is a graph computed from hierarchical structure

H, in which the set of vertices Vc is equal to the R. Let

W (V ) = {w(v), ∀v ∈ V } be the set of feature vectors

related to the vertex set V . The set of edges Ec is defined

by Ec = {(ri, rj) | ri, rj ∈ R, ri 6= rj}.
It is important to mention that each region is repre-

sented by the following set of features: color (color channels

mean and 2-bin color histogram), texture (contrast, dissimi-

larity, homogeneity, energy, correlation, and angular second

moment), region (orientation, bounding box area, solidity,

area, eccentricity, convex area, perimeter, mean intensity,

Euler number and Hu moments), X and Y mean position

and the vertex altitude in the segmentation tree. The ex-

tracted features were then used to create a vertice feature

vector hu ∈ R104×1 for each u ∈ V .

4.2 Architecture

Figure 3 shows the proposed GCN architecture for the im-

age classification task. To embed the input edge and ver-

tice features, two linear layers were applied to produce D-

dimensional embeddings. The dimension of the edge and

vertice embeddings remained the same across all layers. In-

spired by [5], this work adopted M + 1 convolutions, in

which M is chosen at inference time. All M convolutional

layers share the same weights, which improved the results

and made the proposed architecture parameter-efficient [5].

An adaptive architecture that adjusts its depth can cap-

ture important features and patterns that lead to better ac-

curacy and performance. However, balancing model capac-

ity and complexity is crucial to avoid sub-optimal results.

If the model is too shallow, it may not be able to capture

Fig. 3 Model Architecture. The input edges and vertices features
are h and w, respectively.

complex patterns, while a model that is too deep may suffer

from overfitting or be computationally expensive. After the

graph convolution layers, we employ a readout layer that

generates a fixed-size vector representation from the graph

features. The output of the readout layer is then fed into

a multi-layer perceptron (MLP) that learns to make class

predictions based on the graph features.

By combining the adaptive depth graph convolution lay-

ers, readout layer, and MLP, the proposed model can effec-

tively extract and learn hierarchical representations of the

input graphs, leading to accurate and robust classification

results.

5 Experimental Results

To analyze our proposal for image segmentation, we have

applied our strategy to a well-known database. We have

considered the three different graphs computed from the

hierarchy. Also, we have trained all the models for 1,000

epochs with an initial learning rate of 10−3, which is reduced

by half if the validation accuracy does not improve after

ten epochs until reaching a stopping learning rate of 10−5,

Cross Entropy loss, batch size of 64 and Adam optimizer

with β1 = 0.9, β2 = 0.98 and ε = 10−9. We saved the

weights on the epoch with the best validation accuracy.

We evaluated the proposed model in the CIFAR-10 da-

tabase [18], comprising 60,000 32×32 color images across

ten classes, with 6,000 images each. The database is split

into 45,000 training images, 5,000 validation images, and

10,000 test images. It is important to observe that we have

followed the procedure described in [9] and randomly sam-

pled 5,000 images from the training set for validation. The

same splits were used for all experiments.

5.1 Implementation details

5.1.1 Graph construction

We adopt SLIC method [1] as the superpixel segmentation

method since it is simple, fast, and memory efficient, and

to make a fair comparison since almost all work in our com-

parative analysis use it. The target number of superpixels

is typically 20 but may vary for each image. We have used

the watershed by area [6] as the hierarchical segmentation
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Table 1 HGSIC Architecture Details

Input Size Output Size # of Parameters Activation Function
Edge Embedding (|E| x 1) (|E| x 70) 140 -

Vertex Embedding (|V| x 104) (|V| x 70) 7,350 -

GatedGCN
(|E| x 70) (|E| x 70)

25,270 ReLU
(|V| x 70) (|V| x 70)

GatedGCN
(|E| x 70) (|E| x 70)

25,270 ReLU
(|V| x 70) (|V| x 70)

Linear 140 256 36,096 ReLU
Layer Norm. 256 256 512 -

Linear 256 10 2,570 -

Table 2 Accuracy of the proposed model and state-of-art methods in the CIFAR-10 dataset. * means the target number of nodes since
the authors do not report the average value, and the cells with – refer to data that have not been reported.

Model # params # nodes # vertices Accuracy
Spatial GNN
HGCICk (ours) 97,208 47.13 377.04 0.6043
HGCICh (ours) 97,208 47.13 92.26 0.631
HGCICc (ours) 97,208 47.13 2,175.11 0.6186

GAT [2] 55,364 75* – 0.4593
GatedGCN [9] 104,217 117.63 941.04 0.6731
SplineCNN [22] 139,178 197± 82 – 0.5869

Spectral GNN
H-L Cheby-net [17] 200,000 253* 63,756+ 0.7318

method, which outperformed other methods based on dif-

ferent attributes in our experiments. Thus, the hierarchy-

based, kNN-based, and complete-based are constructed from

the hierarchy computed using watershed by area, which

is applied to the RAG of the superpixels obtained by the

SLIC.

5.1.2 Architecture

To implement our model, we use PyTorch Geometric [10],
which batches multiple graphs into a single graph with mul-

tiple subgraphs for mini-batch training. Following [5], we

could set the variable depthM as half of the number of ver-

tices in each graph. However, this is not feasible for graphs

with different sizes in the same batch. Instead, we useM =

bmax(|V|minibatch)/2c, in which max(|V|minibatch) is the

maximum number of vertices among the graphs in the batch.

We use GatedGCN as the graph convolution network,

with a slight modification of replacing batch normalization

with layer normalization in Equations 3 and 5. This method

preserves and updates the edge features wuv between ver-

tices u and v at each layer [9]. Moreover, the soft attention

mechanism in Equation 5 enables the model to learn how

important each neighbor v is for vertex u.

Distinct from other GCN models, this work used a read-

out layer that concatenates the global mean and the max

pooling, capturing the average and maximum values of the

vertex features from the entire graph. Combining two per-

mutation invariant functions was motivated by the better

results obtained in the initial experiments compared to the

use of only one. It is worth mentioning that the MLP in-

cludes two linear layers with layer normalization that help

improve the model’s training stability and generalization

performance. Table 1 shows the details of each layer in our

proposed architecture.

5.2 Quantitative analysis

Table 2 shows the results for the HGCIC model and other

state-of-the-art methods. The HGCIC model was trained

using three different graphs: kNN-based (HGCICk), hierarchy-

based (HGCICh), and complete-based (HGCICc). Interest-

ingly, the HGCICh model, based on the hierarchy structure,

has a much smaller number of edges and outperforms the

other two graphs.

This result is noteworthy since the number of edges

in a graph directly impacts the message-passing step of

graph neural networks, which are designed to learn from the

graph’s structural information. However, our findings sug-

gest that the relationships captured by edges in the graph

are more critical than the graph’s number of edges. This

is consistent with prior work showing that incorporating

hierarchical relationships between vertices and edges can

help improve GNN performance [17]. Overall, test results

demonstrate the effectiveness of the proposed hierarchical

adjacency method in enhancing our model’s performance.

Despite the superior performance of the HGCICh model,

our work did not achieve the best accuracy in image classi-

fication. However, we achieved a competitive result without

resorting to complex strategies that other methods used,

such as recurrent neural networks [5], multiple relations [17],
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Table 3 Examples of predictions of the proposed models. Images have been enlarged for easy viewing.

Groundtruth Hierarchy-based kNN-based Complete-based

Bird Bird Dog Horse

Deer Deer Bird Ship

Frog Frog Frog Frog

Airplane Airplane Airplane Ship

Dog Dog Bird Dog

Airplane Bird Frog Frog

positional embeddings [21], or vector fields to define the di-

rections of information propagation [3]. These techniques

could also be incorporated into our model in the future to

boost its performance further. Another factor that could

affect our results is the size of our graphs, which were the

smallest among the compared methods. The only model

with fewer parameters than ours was the one proposed by [2].

Therefore, our work demonstrates a promising approach for

graph-based image analysis and shows the potential of hi-

erarchical segmentation for creating effective graph repre-

sentations of images.

A drawback of the methods proposed in [17] is that they

require computing the eigenvalues and eigenvectors of the

graph Laplacian matrix. This step is essential for learning

filters that depend on the Laplacian eigenbasis and capture

the graph structural information, but it can be costly. Fur-

thermore, since the Laplacian eigenbasis is specific to each

graph, models trained on one graph may not generalize well

to others. This limitation can restrict the scalability and

applicability of these methods to a broader range of graph

data. Using spatial GNNs, our model can capture the geo-

metric features of the graph without relying on the Lapla-

cian eigenbasis and avoid the problem of generalization to

new graphs.

5.3 Qualitative analysis

In Table 3, we present the qualitative results of our models.

We observe that the model trained with the hierarchy-based

adjacency can classify not only simple images but also im-

ages that are challenging for humans to classify due to their

low resolution (only 32× 32).

5.4 Ablation Study

To showcase the performance improvement in using the cho-

sen architecture, we conduct experiments with a similar ar-

chitecture described in [9], consisting of four GatedGCN

layers, a global average for the readout layer, and an MLP

with two linear layers. Additionally, we tested our proposed
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Table 4 Performance of the ablation study to assess how changes in the proposed method affect performance.

Model # params # vertices # edges Accuracy
Architecture proposed in [9]

8-nn 145,136 47.13 377.04 0.4716
Hierarchy Adj 145,136 92.26 377.04 0.4658

Complete Graph 145,136 47.13 2,175.11 0.4803
Proposed architecture with RGB, X and Y features

8-nn 90,278 47.13 377.04 0.546
Hierarchy Adj 90,278 47.13 92.26 0.548

Complete Graph 90,278 47.13 2,175.11 0.5698

graph creation process with a simple set of features as used

in [2,9,17], which consist of the mean of RGB channels and

X and Y mean position, to demonstrate that a more rep-

resentative set of features also makes improvements in the

task.

Table 4 shows the result of the models trained with the

previously mentioned changes. All models showed degrada-

tion in accuracy, proving the benefits of the architecture

and features used.

Out of all the models tested, the ones using architec-

ture proposed in [9] showed the most significant decrease in

accuracy. This was due to the limited capacity of the archi-

tecture to learn complex features from the data. Specifically,

the four layers in this architecture were deemed insufficient

for the graph-learned embeddings to converge, resulting in

poor representations in the final GNN layer.

Among the models trained with the simplest features,

the one with the highest accuracy was the model trained

with complete graph adjacency. The superior performance

of this model was because the distance between vertices is

not a reliable indicator of segment differences. As a result,

the model gave similar weightage to all neighbors in the

message-passing, consequently prioritizing more neighbors
to perform the feature aggregation. Similar behavior also

occurred in experiments with the [9] architecture, where the

hierarchy adjacency caused relevant vertices to be farther

away from others. As previously said, the four layers are

insufficient for the information to propagate throughout the

graph.

6 Conclusion

This work introduces a new approach for constructing graphs

from images using hierarchical segmentation methods. Ad-

ditionally, it presents a new model called HGCIC, which has

been trained using graphs obtained from hierarchical seg-

mentation in three different adjacency setups. The proposed

model has demonstrated remarkable results by incorporat-

ing variable depth, hierarchical relationships through edges,

and well-defined features. The implications of this research

are exciting and could have a far-reaching impact on various

applications that rely on graph-image analysis.

Although the results were slightly inferior, they still

showed promise. The proposed approach utilizes significantly

smaller graphs than those in previous works, and the pro-

posed GCN architecture contains fewer parameters yet still

delivers promising results. Moreover, the ablative study con-

firmed the hypothesis that the choice of architecture and

features positively impacted the model’s overall performance.

These findings highlight the potential of the proposed ap-

proach as a more efficient and effective means of graph con-

struction and analysis.

In future works, we plan to investigate the impact of at-

tention mechanisms on our approach. Additionally, we aim

to conduct a more in-depth analysis of the relationship be-

tween the number of vertices and model performance while

exploring multiple graph relations.
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21. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf,
G., Beaini, D.: Recipe for a general, powerful, scalable graph
transformer. Advances in Neural Information Processing Sys-
tems 35, 14,501–14,515 (2022)

22. Vasudevan, V., Bassenne, M., Islam, M.T., Xing, L.: Im-
age classification using graph neural network and multiscale
wavelet superpixels. Pattern Recognition Letters (2023)

23. Wan, S., Gong, C., Zhong, P., Du, B., Zhang, L., Yang, J.:
Multiscale dynamic graph convolutional network for hyper-
spectral image classification. IEEE Transactions on Geo-
science and Remote Sensing 58(5), 3162–3177 (2019)

24. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.: A
comprehensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems (2020)

https://dx.doi.org/10.5244/C.33.223
https://dx.doi.org/10.5244/C.33.223

	Introduction
	Related Works
	Theoretical Background
	Hierarchical Graph Convolutional Networks by using Hierarchy of Superpixels
	Experimental Results
	Conclusion

