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Abstract A coherent description is an ultimate goal re-

garding video captioning via a couple of sentences because

it might also affect the consistency and intelligibility of the

generated results. In this context, a paragraph describing

a video is affected by the activities used to both produce

its specific narrative and provide some clues that can also

assist in decreasing textual repetition. This work proposes

a model, named Hierarchical time-aware Summarization

with an Adaptive Transformer – HSAT, that uses a strat-

egy to enhance the frame selection reducing the amount of

information that needed to be processed along with atten-

tion mechanisms to enhance a memory-augmented trans-

former. This new approach increases the coherence among

the generated sentences, assessing data importance (about

the video segments) contained in the self-attention results

and uses that to improve readability using only a small frac-

tion of time spent by the other methods. The test results

show the potential of this new approach as it provides higher

coherence among the various video segments, decreasing the

repetition in the generated sentences and improving the de-

scription diversity in the ActivityNet Captions dataset.

Keywords Video captioning · Memory-augmented

transformer · Attention mechanisms · Hierarchical graph-

based video summarization.

1 Introduction

Video captioning is the task of concisely describing a video

through text [5,6,22]. One of the biggest problems in video

captioning task is the content description of the video based

on a ground truth (GT) created by more than one per-

Silvio Jamil F. Guimarães
ImScience/PUC-Minas – Belo Horizonte 31980-110, Brazil
E-mail: sjamil@pucminas.br

son [21] since GT tends to cover events of a video from differ-

ent perspectives and emphasizing distinct moments. Video

captioning results are strongly correlated with two interre-

lated sub-tasks: (i) temporal event detection and (ii) de-

scription generation.

Detection of video events can be based on three strate-

gies: (i) random selection; (ii) time-sliding window; and

(iii) scene (or shot) detection. In any way, those methods

seek somehow to summarize video content to better guide

the caption generation step with the most informative parts

of the video. Broadly, there exist two types of video sum-

maries: a static video summary composed of keyframes and

a dynamic video summary (composed of key-shots). Thus,

there is a great difficulty in the selection of video frames

(or video shots) to cover all the video narrative without

the loss of any content [1,5,6,22]. Nevertheless, video sum-

marization represents an ill-posed problem that has been

addressed by many authors over the last decades and a

number of surveys on video summarization have already

appeared in the literature [2,23,25]. In any way, video sum-

marization may provide better input for the video caption

generation step since it can generate an informative synop-

sis of a video preferably with maximum representativeness,

minimum repetition, and maximum diversity [23].

Regarding description generation, transformers [32] have

recently shown to be very useful for many sequence-related

tasks, such as machine translation [34], information retrieval [38],

text classification [15], document summarization [41], im-

age classification [7], image captioning [19, 26], video cap-

tioning [5, 6, 22], and others [31]. In video captioning, the

authors of [22] proposed a memory-augmented transformer

to cope with text repetition, while in [5,6] a re-weighting of

the importance of data present in the memory module and

the self-attention module, respectively, was explored to di-

rectly influence the amount of information the transformer

uses to learn. The main idea of those works is somehow to
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HSAT

A camera pans around a large group of people sitting on a bus and leads into people riding on bikes. Several shots are shown of people

riding in the water as well as swimming around the area. More clips are shown of people swimming around the ocean as well as swimming

around the ocean.

Ground-Truth

Several shots are shown of a man speaking to various groups of people and leads into people wearing wet suits and walking. The people

walk down a beach and are seen swimming around in the water. More shots of fish are shown and ends with the people walking out of the

water and high fiving the camera man.

Fig. 1 An example of the result obtained by the proposed method
HSAT.

assess the data importance (about the video segments) and

explore that to improve readability by reducing repetition.

But, in many cases, part of the generated sentences can be

repeated, diminishing the quality of the final result. That

is more evident in an event-based description because, if

there are different events (video segments) with high corre-

lation, there is a high probability that the same (or almost

the same) sentence fragment appears more than once in the

final result. Currently, some methods try to cope with that.

However, this is not a trivial task since it consists of evalu-

ating the relationship between a text excerpt and all others

being produced so that the described event is not repeated

in the final result.

Figure 1 shows an example of the results obtained by the

proposed method Hierarchical time-aware Summarization

with an Adaptive Transformer – HSAT, along with the ex-

pected GT description. It is easy to observe the high corre-

lation among frames, which also appears in the GT result.

Unlike other methods that tend to present the same sen-

tence several times, the use of attention mechanisms made

in our proposal enhances coherence among generated sen-

tences and the numerous events within a video (similar to

Adaptive Transformer [6]). Thus, the final description can

adapt even with the presence of similar events and be more

concise, meaningful, and intelligible. In addition, Figure 1

demonstrates the great difficulty in describing the charac-

teristics of the database, since the description of daily ac-

tivities in a real scenario is often done in situations with few

variations of information, and the modifications are usually

not enough to differentiate the agent due to video charac-

teristics such as perspective and distance.

An important issue in video captioning is the reduction

of similarity between frames (very close in time) used in

caption generation which could lead to a decrease in repe-

tition rate in the final result. Together with that, there is

also the need of preserving the temporal coherence between

video content and the generated text which may increase

the number of frames that are processed (and described)

and diminish the quality of the final result. Attention mech-

anisms can be utilized to generate distributions over video

segments of higher interest at the expense of others and

then help in video captioning. Traditional attention meth-

ods tend to consider all viable areas to make bigger atten-

tion. However, highlighting regions might also incur some

failures and omissions [1, 12]. Therefore, some methods re-

duce frames into smaller distributions to verify local interest

and reweight the importance of features. These strategies

avoid the awareness of data with little significance for the

final result. Doing that, unobserved semantic aspects can

be explored [13].

Figure 2 illustrates the proposed method for video cap-

tioning. Our method adopts three major components: (i) a

video summarizer; (ii) a feature extractor; and (iii) a memory-

augmented transformer with adaptive attention. The sum-

marization step adopts a hierarchical approach to produce

a static video summary that improves the set of frames

used by the feature extraction step. This approach is based

on [29] and copes better with (dis)similarities among video

frames producing a more valuable frame selection for the

description process. Different from [29], it uses a watershed-

based hierarchical method applied to a frame similarity

graph constructed with CNN-based frame descriptors and

cosine similarity. Besides, frames are only considered to be

similar if the difference between their time index is less than

a fixed threshold. This can be used to restrict the relation-

ship between video frames far away and implies that our

hierarchical graph-based summarization approach is time-

aware (which also differs from many works in the literature,

including [29]). After the summarization step, aligned fea-

tures for appearance and optical flow are extracted only

for the selected keyframes and used for both to induce a

video captioning model during training time and to feed the

trained model during inference time to generate a descrip-

tion for a new unseen video. The model adopted for cap-

tion generation is based on a previous work, named Adap-

tive Transformer [6], in which a memory-augmented trans-

former with a shared architecture explores the attention

mechanism to re-weight the importance of data generated

by the self-attention module. The motivation for that is to

explore the results generated by the self-attention module

to improve readability through diminishing repetition.

Although this new proposal is based on a previous work [6],

it presents the following specific contributions in compari-

son to it: (i) a graph-based approach to model the similarity

of frames including also time restrictions to avoid the rela-

tionship between frames far away; (ii) a hierarchical sum-

marization strategy applied to the frame similarity graph

to obtain a video summary; and (iii) a significative reduc-

tion of computational time spent by description generation

step without any impact in the quality of the final results.

Time reduction achieves almost 70% during training when

compared with [6] but still keeping similar results to the

state-of-the-art approaches regarding quality.
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Fig. 2 The outline of the proposed method with (i) a hierarchical
graph-based summarizer; (ii) a feature extractor; and (iii) a shared
memory-augmented transformer with adaptive attention.

This work is organized as follows. Section 2 discusses re-

lated works and provides the theoretical background. Sec-

tion 3 presents the proposed method, followed by the ex-

perimental results and their analysis in Section 4. Finally,

Section 5 draws some conclusions and future work propos-

als.

2 Related Works and Theoretical Background

2.1 Video captioning

The video captioning task consists of producing sentences

that are diverse and able to describe numerous events in a

video into a dense paragraph description that relates all of

them [22]. One of the major challenges for video captioning

is to produce a coherent narrative for a segmented video

database (or for lengthy videos that have to be segmented

before described) since video segmentation may motivate

redundancy in generated descriptions [21,28].

The description of events can happen in two ways, one

being the separate description of every event and, in this

case, they may (or may not) be related, some other way is

to group the related events and produce at least one co-

herent sentence about them in the paragraph. The prob-

lem in grouping events into paragraphs is linked to co-

herence because the paragraph must present its elements

avoiding repetition. A dense description can narrate sep-

arate events (with or without relation), but in this case,

since they are separate descriptions, redundancy is usually

not an issue. However, in the generation of a paragraph

for a video, each sentence is possibly related to the oth-

ers [1,28]. Therefore, if some events present similarities, the

generated sentences can repeat. Thus, the method for video

captioning should prevent the final description from having

the same (or almost the same) sentence many times. The

real intention behind this process is to capture other as-

pects that, by chance, have not been described yet. Thus,

describing a video through a paragraph consists of ensuring

cohesion while maintaining similarity to the expected GT

results [1, 19,21,22].

Some feature extraction methods use one strategy based

on sequential data sampling. In video captioning, this pro-

cess consists of choosing frames at regular intervals within

the video. Thus some relevant frames for the video con-

tent (and also for its description) might not be considered.

Generally, a sequential selection policy extracts a limited

number of frames (for instance, 100 frames) just from the

begging of the video. Therefore, the remain of video frames

(along with all the events they represent) are completely

ignored [21,28,42].

2.2 Attention mechanisms and transformers

The attention mechanisms were first applied to the ma-

chine translation task [3] and, after that, they were applied

to other tasks such as object detection, image classifica-

tion, and image content description [39]. The use of atten-

tion mechanisms seeks to highlight the importance of more

prominent content, which tends to be neglected in conven-

tional methods [32].

The impact on the application of attention mechanisms

to description tasks was first explored by [37] in which the

authors evaluated the impact of attention in image cap-

tioning. They explored soft and hard attention, and the re-

sults achieved showed improvement for both, but with high

training costs for hard attention. Thus, other variants of

attention were proposed and studied in the literature. But

in [32], the use of attention reached another level, and it

began to be considered a method (called transformer) ca-

pable of producing results by itself without the need for

other techniques.

A challenge for attention mechanisms lies in the long-

range dependencies. This problem is related to the net-

work’s capacity to learn from all the previous states. But the

adoption of a self-attention mechanism creates the possibil-

ity to circumvent those difficulties, at the same time allows

more efficient use of available resources through extensive

use of parallelism [32].

In order to re-weight the importance of certain data, at-

tention mechanisms can be applied to the network backbone

to increase the importance of specific information about

others. Techniques, as presented by [18], tend to increase

the importance of some features, compared to others, and

could be explored to increase the relationship between data

that previously could not be easily related [5, 18].

Experiments on machine translation tasks showed trans-

formers as superior models in quality while being more par-

allelizable and requiring significantly less time to train than

others. A transformer achieves good results because it can

capture the relationship between tokens and the generated
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vocabulary. After that, transformer models have been suc-

cessfully applied to several distinct tasks, such as machine

translation, information retrieval, text classification, docu-

ment summarization, image classification, image caption-

ing, and video captioning [7, 15,19,22,26,30,34,41].

Some transformer models exploit the traditional encoder-

decoder architecture, while others use a shared one. In a

traditional encoder-decoder architecture, the encoder is sep-

arate from the decoder, and the encoded information about

the video must be passed and used in some of the decoder

steps. So, the decoder uses the data produced by the en-

coding network to generate each word/sentence [19,26,43].

For shared architectures, video data and generated text to-

kens are passed as input to the same module, which (after

operating on them) is responsible for both encoding and

decoding. The latter architecture is generally used due to

the reduction of operations, resulting in time and processing

savings [8, 22,30].

Considering the results found by [5,6], it may be interest-

ing to explore the use of different attention mechanisms in

other parts within the transformer. In this work, we chose

to evaluate the impacts of adaptive attention within the

main backbone of the transformer (similar to [6]), instead

of its adoption within the memory module as in [5]. The idea

of reinforcing the characteristics learned during the current

training period appears as a way of helping the transformer

to learn new characteristics, increasing the quality of the

results of the multi-head attention mechanism. Thus, the

attention regions parallelized by the transformer (through

multi-head attention) can be improved through adaptive

attention in order to refine the attention distribution com-

puted by each head.

2.3 Memory-augmented transformer

A memory-augmented transformer contains a memory block

(information that can be accessed later) and a memory up-

dater module to allow adjustments on that stored infor-

mation during its execution. The memory updater mod-

ule seeks to assist in assessing video segments’ importance

in generating new sentences. Its adoption allows the trans-

former to recurrently evaluate longer sentences. Conceptu-

ally, that proposal uses similar strategies to those defined by

LSTM [17] and GRU [9] modules. The difference between

them and the memory updater module is the high capac-

ity of the latter to model complex data provided by the

transformer employing a multi-head attention stage. Con-

sequently, it enables the memory to capture/model different

concepts and, therefore, to better understand and deal with

similarities among video events [5, 6, 22].

The use of a memory module has been gaining projection

in the literature. Unlike conventional methods, the use of

memory mechanisms helps to reduce the redundancy by

recurrently evaluating information from previous states [12,

22] . In this way, a memory module becomes a mechanism

for assessing the importance of sentences (and video events).

So, the information that is passed between states is used

to assess their relevance degree. Memory data is encoded

during video processing, and it should be updated to keep

track of relevant information.

Considering that M l
t ∈ RTm×d represents memory state

at layer l in step t in which Tm denotes memory length,

and H̃ l
t ∈ RTc×d is the intermediate hidden state vector,

the memory update process (proposed in [22]) can be sum-

marized by Equations (1)–(5):

Sl
t = MultiHeadAtt(M l

t−1, H̃
l
t , H̃

l
t), (1)

Cl
t = tanh(W l

mcM
l
t−1 +W l

scS
l
t + blc), (2)

El
t = W l

mzM
l
t−1 +W l

szS
l
t + blz, (3)

Zl
t = sigmoid(W l

r(ReLU(W l
p(ρ(El

t)))))� El
t, (4)

M l
t = (1− Zl

t)� Cl
t + Zl

t �M l
t−1, (5)

in which � denotes Hadamard product, W l
mc, W

l
sc, W

l
mz,

and W l
sz are trainable weights, blc and blz are trainable bias.

Cl
t ∈ RTm×d is the internal cell state, while Zl

t ∈ RTm×d is

the update gate that controls which information to retain

from the previous memory state. Equation 1 presents Sl

as the output of the multi-head attention mechanism and

was used in [22] as the first attention on a memory module.

The El was used as a mechanism to assess the importance

of the event, Zl
t as the information regulator and Cl

t as

the new information sample. In this way, the update of M l
t

will occur through a linear combination of new information

represented by Cl
t and the information already present in

the memory, i.e., M l
t−1.

According to [5], memory is made up of information that

the model must remember, however, this may not be the

best way of learning, being necessary, in some cases, to learn

new information and forget, momentarily, information pre-

viously learned. In these cases, the information contained

in memory is considered to have no value, that is, forget-

ting it would not harm the result. On the other hand, there

are times when only the learned information is enough to

generate new patterns and, for these cases, any new infor-

mation will not be used, as there is no status modification

that could be incorporated into the result. However, there

are cases in which it is necessary to use part of the informa-

tion that exists in memory and a part of new information so

that new sentences are produced. The regulator Zt tries to

find the ideal proportion of information. For this, it consid-

ers the importance of what exists in memory and the new

information learned.
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Algorithm 1 Hierarchical video summarization
Input: A video V, threshold value δt, summary size k
Output: A list of keyframes K

1: Create a graph G = (V,E) with a vertice set V = ∅ and an
edge set E = ∅

2: for all frame f ∈ V do
3: if f 6∈ V then
4: V := V ∪ {f} // Insert f in V if f does not belong to it
5: end if
6: df := GenerateDescriptor(f) // Obtain a descriptor for

frame f
7: for all frame f ′ ∈ V such that f ′ 6= f and |tf − tf ′ | < δt

do
8: if f ′ 6∈ V then
9: V := V ∪ {f ′} // Insert f ′ in V if f ′ does not belong

to it
10: end if
11: df ′ := GenerateDescriptor(f ′) // Obtain a descriptor

for frame f ′

12: G.AddEdge(f, f ′) // Insert edge (f, f ′) using frame
similarity as weight

13: end for
14: end for

15: T := G.Obtain MST from Graph()
16: H := T.Generate Hierarchy from MST ()

17: K := H.Find Keyframes(k) // Remove k − 1 edges from H
to generate k sets

// and select the central vertice
of each set as keyframe

18: Return K;

3 Proposed Method

The problem of dense video captioning is related to the

amount of similar information laid out sequentially with

little or no variation. The relationship between the distri-

bution of frames has a direct impact on the sentences gen-

erated and implies an increase or not in repetition.

To deal with that issue, the proposed method is divided

into three steps (see Fig. 2). The first is the selection of

the best set of frames for each video through a hierarchi-

cal summarization approach which splits a video into sub-

sets of similar frames and selects the central frame (using

similarity among frames) as the keyframe. The second step

extract features for the appearance and optical flow of pre-

viously selected keyframes. It is quite similar to the anal-

ogous step in [6], but it spends lesser computational time

since the video summarization step is able to choose a set

of keyframes that is more informative but smaller. Finally,

the third step is description generation using an Adaptive

Transformer (similar to [6]) but which was trained to work

with smaller sets of keyframes (but describing the most im-

portant video contents).

3.1 Hierarchical time-aware graph-based
summarization

Unlike the traditional approach that uses a sequential selec-

tion policy for frame selection, our proposed method chooses

frames based on their similarity. It adopts a hierarchical

graph-based summarization method to obtain the most valu-

able frames (as keyframes).

A frame similarity graph is constructed and used by the

video summarization approach. In this graph, each vertice

represents a video frame. An edge between two vertices only

exists if the difference between their time indexes is lower

than a threshold δt. The edge weight represents the simi-

larity value between the two frames associated with edge

extremes.

Algorithm 1 presents the hierarchical video summariza-

tion approach used for frame selection in our proposal with

the following steps: (i) construction of a frame similarity

graph for a video (lines 1–14); (ii) calculation of a minimum

spanning tree (MST) for the graph (line 15); (iii) production

of a hierarchy through a re-weighting process based on that

MST (line 16); and (iv) generation of sets of similar frames

through cuts of the generated hierarchy and the selection

of the central vertice of each set as a keyframe (line 17–18).

Figure 3 shows an example of each step of Algorithm 1.

During graph construction, edges between frames are

only created if the difference between their time indexes is

less than a fixed threshold δt. Equation 6 represents that

constraint and is ensured at line 7 of Algorithm 1.

|tf − tf ′ | < δt (6)

in which tf and tf ′ represent the time indexes from frames

f and f ′, respectively. This can be used to restrict the rela-

tionship between video frames far away and implies that our

hierarchical graph-based summarization approach is time-

aware (which also differs from many video summarization

works in the literature, including [29] on which our approach

is based).

According to [11], hierarchies can be represented by min-

imum spanning trees, and any connected hierarchy for a

graph can be handled by means of a weighted minimum

spanning tree of that graph. Moreover, the authors in [14]

showed that a hierarchical segmentation of a graph con-

sists of transforming an initial hierarchy into another one

by rebuilding the hierarchical structure according to a dis-

similarity measure between regions. That could be done by

carefully re-weighting all edges belonging to an MST of the

original graph. In [29], the authors provide a unified frame-

work for video summarization that uses a minimum span-

ning tree of frames and a weight map based on hierarchical

observation scales computed over that tree. The weight map

is generated from the frame similarity graph in which the

clusters (or connected components of the graph) can easily
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Fig. 3 Ilustration of the hierarchical video summarization ap-
proach used for frame selection in our proposal with the following
steps: (i) construction of a frame similarity graph for a video;
(ii) calculation of a MST for the graph; (iii) production of a hi-
erarchy through a re-weighting process based on that MST; and
(iv) generation of sets of similar frames through cuts of the gener-
ated hierarchy and the selection of the central vertice of each set
as a keyframe (i.e., the removal of k− 1 edges from the hierarchy
with higher weight values generates k sets). Selected keyframes
are indicated in the final result with green circles.

be inferred. Moreover, the use of this strategy allows the

application of a similarity measure between clusters during

graph partition, instead of considering only the similarity

between isolated frames.

Inspired by [29], our approach also uses a minimum

spanning tree (MST) to generate and represent a hierarchy.

Our proposed method used the Kruskal method to obtain

the MST (line 15 of Algorithm 1). After that, a hierarchy is

calculated by re-weighting all edges belonging to the MST.

Unlike [29], our method constructs a watershed hierarchy

by area following the definition of [10] (line 16 of Algo-

rithm 1). Finally, the generation of sets of similar frames

can be achieved through cuts of the generated hierarchy

(i.e., the removal of k − 1 edges from the hierarchy with

higher weight values generates k sets). After that, the se-

lection of the central vertice of each set as keyframe is a
simple task (lines 17-18 of Algorithm 1).

At first, the use of an extra step in the video captioning

pipeline such as the proposed hierarchical summarization

approach may appear to increase the total computational

time. But, the process of selecting a smaller set with more

informative frames actually leads to a reduction in compu-

tational time (because a much smaller number of frames is

processed by the description generator) without any loss of

quality in the final result.

3.2 Adaptive transformer for video description
generation

To deal with coherence issues, we explored an improve-

ment to the self-attention module that exists within the

main backbone of the transformer (just after the multi-head

attention modules). So, we adopted additional attention

blocks to emphasize the data generated by self-attention

and cross-attention. This was first proposed in a previous

work, named Adaptive Transformer [6], which is shown in
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Fig. 4 An illustration of the Adaptive Transformer, proposed
by [6], architecture highlighting one of its adaptive attention mod-
ules (and showing a detailed representation of it).

Figure 4, which focuses on reducing repetition. The memory

module is still an important part of the shared transformer

module, and this is responsible to capture the long-term

dependency of the sentences.

The Adaptive Transformer uses an attention mechanism

to rebalance the results of other attention mechanisms. This

process seeks to highlight the characteristics that are con-

sidered important in smoothing out others [5]. Figure 4

shows the Adaptive Transformer with the presence of two

modules (called Adaptive), both are identical. This work

uses a version of adaptive attention as a way to apply reweight-

ing to the results that are used for feeding memory updater,

and adaptive attention is also applied to the results of cross

attention.

The proposal of using attention mechanisms to compose

a new model called transformer first appeared in [32] to re-

duce the computational cost without quality loss. Follow-

ing [32], the main component of a transformer is the scaled

dot-product attention. Given query matrix Q, key matrix

K, and value matrix V , the attention output is given by

Equation 7:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (7)
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Combining h parallel instances of scaled dot-product at-

tention, we obtain the multi-head attention represented by

Equation 8.

MultiHeadAtt(Q,K, V ) = Concat(head1; . . . ;headh)WO,

(8)

in which headi = Attention(QWQ
i ,KW

K
i , V WV

i ), and lin-

ear projections WQ
i , WK

i , WV
i and, WO are learned dur-

ing training. The detailed outline of the adaptive attention

module used in our proposal result on Al
t ∈ RTm×d is given

by Equation 9:

Al
t = sigmoid(W l

mhlMH l
t)�W l

mhrMH l
t + bla, (9)

in which W l
mhl, and W l

mhr are trainable weights, bla are

trainable bias, and MH l
t stands for multi-head attention

results.

The strategy applied in the adaptive attention mecha-

nism is based on evaluating data that have already been pre-

viously processed by another attention mechanism. Thus,

the quality of the distribution is enhanced, making the de-

scriptions more discriminative and more related to the con-

tent they intend to represent. The use of second attention

seeks to amplify the importance of the information. Thus,

the application of adaptive attention acts as a refinement

process on the results of previous attention, and this has an

impact on the data learned on the memory updater module

both on the regulator Zt and on the newly learned infor-

mation Ct. So, as new information is highlighted, it tends

to replace the data stored in memory.

4 Experimental Results

In this section, we present the results achieved by each pro-

posed method. All experiments, models were trained for

20 epochs with a learning rate of 10−4. We selected the

best model, considering the CIDEr-D score since it is con-

sidered the ideal assessment metric for content description

tasks [1,33]. We also report the BLEU-4 score (B@4) which

is a common metric for NLP tasks such as machine trans-

lation, and the Repetition-4 score (R@4) which measures

redundancy. But, the R@4 score should not be used alone

because it can prevent a correct assessment since a ran-

dom text without any word repetition would present an

R@4 score close to 0. Therefore, the best way to assess the

model’s improvement is through the joint evaluation of two

or more metrics. In this way, the assessment of the relation-

ship between the GT result and the final description was

made using CIDEr-D score, while the R@4 score is evalu-

ated afterward to point out the diversity achieved (through

the reduction of repetition).

4.1 Baselines

The performance of the proposed models was compared

with the following methods representing the state-of-the-

art: VTransformer (Vanilla transformer) [43], Transformer-

XL [12], Transformer-XLRG [12], AdvInf [28], GVD [42],

GVDsup [42], MFT [35], HSE [40], MART [22], EMT [5],

and Adaptive Transformer [6].

The works used for comparison are divided according to

the technique used. Thus, MFT [35] and HSE [40] are based

on LSTM to recurrently evaluate the generated sentences to

produce new words. The works GVD [42], GVDsup [42], and

AdvInf [28], in addition to LSTM, also use detection fea-

tures in an attempt to increase the quality of the obtained

scores. Finally, the remaining works, i.e., VTransformer [43],

Transformer-XL [12], Transformer-XLRG [12], MART [22],

EMT [5], and Adaptive Transformer [6], use transformers as

a technique to reduce recurrence, increasing the quality of

descriptions, optimizing performance, and augmenting con-

sistency by combining all the information from elements

that represent the context.

4.2 Dataset and implementation details

We apply the proposed method to the ActivityNet Captions

(ANC) dataset [4, 21]. This dataset contains 10,009 videos

for training and 4,917 videos for validation. Videos used

during the training step have a single reference paragraph,

while validation videos have two reference paragraphs. In [28],

the authors used the same configuration proposed by [21],

however, with different divisions, in which both validation

and testing were conducted with the same set of videos.

Here, we follow [42], in which authors proposed a new way

of subdividing this dataset to optimize the use of videos

and avoid overfitting. They kept the training videos and

divided the validation videos into two subsets, namely: ae-

val with 2,460 videos for validation and ae-test with 2,457

videos for testing. And, the ANC dataset comes with an-

notated segments (for each temporal event) with human-

written natural language sentences that represent, on aver-

age, there are 3.65 segments per video.

The initial preprocessing follows with minor adjustments

the same procedure described in [5, 6, 22]. The used vocab-

ulary was created based on phrases that happen in at least

5 instances for the ANC dataset. The resulting vocabulary

carries 3,544 words. The unit memory size was defined as

2 and, the memory dimension is set to 1, 200. Videos are

represented by extracting 4 FPS. Those frames are used

as input for the hierarchical summarization approach (de-

scribed with CNN-based features extract with a pre-trained

ResNet50 and using cosine similarity) with δt = 8 and using

the watershed hierarchy by area as described in [10, 24] to

generate a summary of size k = 10.
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Aligned features for appearance and optical flow had

been extracted for each frame belonging to the video sum-

mary. Specifically, for appearance, 2048-D feature vectors

from the “Flatten-673” layer in ResNet-200 [16] are used,

while, for the optical flow, 1024-D feature vectors from the

“global pool” layer of BNInception [20] are adopted.

Both networks are pre-trained on the ANC dataset for ac-

tion recognition and they are supplied by [36].

In order to use the proposed model, initially video and

text are encoded and normalized separately. Encoded video

and text embeddings are denoted as H0
video ∈ RTvideo×d and

H0
text ∈ RTtext×d, respectively, in which Tvideo and Ttext rep-

resent video and text lengths, while d is the embedding size.

They are used after a concatenation and passed to the trans-

former as inputH0 ∈ RTc×d, i.e.,H0 = Concat(H0
video;H0

text),

in which Tc = Tvideo+Ttext, following the proposal of [8,30].

4.3 Evaluation metrics

The evaluation of sentences is a separate challenge, as there

are several ways to write sentences, but with the same mean-

ing, whether using synonyms or emphasizing distinct infor-

mation. This process is intuitive for humans. But there is no

specific approach for evaluating the video captioning task.

So, what is usually done is the adaptation of machine trans-

lation metrics that are extended for this task [1, 27,33].

In order to compute the improvement of the descrip-

tions, we will evaluate the obtained results following the

same approach used by the authors of [22, 28, 35]. They

reported their results using metrics widely disseminated in

the literature such as BLEU-4 (B@4) [27] and CIDEr-D [33],

with the objective of evaluating the similarity between the

descriptions generated by their models and the GT results.

However, these metrics cannot penalize the repetition that

may happen, so it is necessary the use of another met-

ric for evaluating how diverse the description is. Thus, the

Repetition-4 score (R@4) [22,28,35] was applied, and its ob-

jective is to emphasize the reduction of repetition of words

in the description. Both R@4 and B@4 scores use 4-grams

to increase word grouping.

4.4 Comparison to the state-of-the-art methods

Tables 1 and 2 present the results found for HSAT along

with other state-of-the-art methods. Table 1 summarizes

the performance of the proposed models, comparing them

with state-of-the-art models in ae-val split of the ANC

dataset. The results reported were evaluated mainly ac-

cording to the CIDEr-D metric to choose the best model.

The results shown in Table 1 represent models based on

transformers, LSTM-only, and LSTM with detection fea-

tures. The results achieved by the proposed model show

an improvement compared to the others in relation to the

Table 1 Performance of our model and other of state-of-art
methods in ae-val split of ActivityNet Captions (Det indicates
whether detection features are used; while Rec indicates whether
sentence-level recurrence is used).

Det Rec B@4 ↑ CIDEr-D ↑ R@4 ↓
LSTM based methods

MFT [35] χ
√

10.27 19.12 17.71
HSE [40] χ

√
9.84 18.78 13.22

LSTM based methods with detection feature
GVD [42]

√
χ 11.04 21.95 8.76

GVDsup [42]
√

χ 11.30 22.94 7.04
AdvInf [28]

√ √
10.04 20.97 5.76

Transformer based methods
VTransformer [43] χ χ 9.75 22.16 7.79

Transformer-XL [12] χ
√

10.39 21.67 8.54
Transformer-XLRG [12] χ

√
10.17 20.40 8.85

MART [22] χ
√

10.33 23.42 5.18
EMT [5] χ

√
10.24 23.66 4.27

Adaptive Transformer [6] χ
√

10.38 24.22 5.84
HSAT χ

√
10.31 23.76 5.85

CIDEr-D metric, except when compared to the Adaptive

Transformer. The adoption of the adaptive attention mod-

ule as a reinforcement strategy for previous attention results

contributes to increasing the quality of the learned feature.

With this, the results of its modified attention tend to bet-

ter weight for data with greater importance. It turns out

that just the addition of the adaptive attention block in-

creases the CIDEr-D score, but this does not guarantee the

reduction of the R@4 score.

Despite the superior result for BLEU-4, achieved by the

GVDsup method, to those found in Table 1, as it is not

considered the best metric for the video captioning task, the

results do not represent a marked improvement as found by

CIDEr-D. According to [27], the use of BLEU unigram com-

pares the evaluation of the simple precision of the method,

characterized by the simple count of correct words divided

by the total number of words in the sentence. On the other
hand, the CIDEr-D score proposes to measure the best tex-

tual sentence among the candidates by the majority of sim-

ple votes. However, the B@4 score is considered an interest-

ing metric for some NLP tasks, such as machine translation

since, if the sentence is very close to most GT sentences used

as a reference, the probability is greater that the sentence is

correct. This evaluation method seeks to bring the human

description closer to that described by machine translation,

as human evaluation is inherent to the perception of the

person describing the scene in focus [33].

The results shown by Table 2 present the comparison

of the proposed model and relation to the performance of

models based on transformers in ae-test split of the ANC

dataset (similar to what was done in [5, 6, 22]). Again, the

Adaptive Transformer presents better results than the oth-

ers, mainly for the CIDEr-D metric and followed closely by

HSAT.

In summation, as one can see in Table 1 and 2, the

results achieved by the proposed model are superior, ex-

cept when compared to Adaptive Transformer whose re-
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Table 2 Performance of our model and other transformer-based
methods in ae-test split of ActivityNet Captions (Rec indicates
whether sentence-level recurrence is used).

Rec B@4 ↑ CIDEr-D ↑ R@4 ↓
Transformer-based methods

VTransformer [43] χ 9.31 21.33 7.45
Transformer-XL [12]

√
10.25 21.71 8.79

Transformer-XLRG [12]
√

10.07 20.34 9.37
MART [22]

√
9.78 22.16 5.44

EMT [5]
√

10.00 22.84 4.55
Adaptive Transformer [6]

√
10.00 23.04 5.29

HSAT
√

9.94 22.97 5.35

sults HSAT follows closely. The changes achieved imply an

increase in similarity with the GT results but with a reduc-

tion of repetition without losing cohesion among the gener-

ated sentences for describing each video.

4.5 Qualitative analysis of adaptive transformer

To further promote the perception of the results obtained

and their improvements, Figure 5 presents samples of para-

graphs generated by the Adaptive Transformer [6] (with-

out any summarization) and those produced by other ap-

proaches from the literature, i.e., Vanilla Transformer [43],

Transformer -XL [12], MART [22] and EMT [5], in addition

to the GT results. With this, it is possible to compare the

different results found by each approach, making it possible

to evaluate the coherence, similarity with the GT results,

and the repeatability rate of the descriptions generated by

the Adaptive Transformer and the other methods. The in-

consistencies of every approach had been highlighted to fa-

cilitate the visualization: (i) red/bold for cases of use of

different pronouns from the ones in the GT result (or when
they are misused); and (ii) blue/bold for the occurrences of

a repeated sentence in the paragraph.

The paragraph descriptions generated by the Vanilla

Transformer cannot prevent repetition, and, in many cases,

there is no similarity between the produced text and the GT

result. In Figure 5a and 5b, it is easy to observe that the

paragraph produced by Vanilla Transformer does not have

fluidity, and the notion of continuity is lost. The Vanilla

Transformer is the method with the highest repetition rate

among those presented. The Transformer-XL can return

fluid and continuous paragraphs, but it has a high repeata-

bility rate, as illustrated in Figure 5a and, in some cases

does not return a discriminating description, as one can see

in Figure 5b. MART manages to maintain coherence among

generated sentences and a lower repetition rate. However,

in some cases, MART appears to produce less detailed de-

scriptions, as shown in Figure 5b. In the results for EMT is

possible to observe that it preserves coherence and context

with a low repeatability rate. In Figure 5b, the generated

paragraph maintains the context but doesn’t get the sec-

ond pronoun right. The qualitative results for the Adaptive

Transformer are closer to the GT, it is possible to notice

that the descriptions have coherence and fluidity. In addi-

tion, repeatability is reduced. Figure 5a presents a very dis-

criminating result and captures the continuity of the scene

and, despite the description being longer than the GT, there

is no repetition. Despite the repetition present in Figure 5b,

it is possible to notice that the result presents continuity in

the description.

4.6 Qualitative analysis of HSAT

The results found for HSAT demonstrate that it presents an

improvement related to the detection of video events. When

compared to the sequential selection of frames, the amount

of information that the method does not observe/process is

large.

In some cases, when the sequential selection of frames is

used, only the first one hundred frames with a rate of 2 FPS

are used to represent the video. Thus, for A video with a

length greater than 50 seconds, all information after the first

50 seconds is ignored. On the ANC dataset, the videos do

not have the same length, the number of events varies from

2 to 6, and, in some cases, one video has more than two

hundred seconds. Because of this, summarization appears

as a better way to evaluate the content distributed in the

entire video. Thus, the neglected information due to time

limitations adopted in a sequential selection of frames does

not exist with the hierarchical summarization approach.

Despite that HSAT selects a relatively less number of

frames (only 10), it is sufficient to cover all videos of the

dataset (since the number of events in ANC dataset varies

from 2 to 6).

Figures 6 and 7 show the diversity of video content

present in the dataset. Figure 6 shows the summarization

result in a short video that has 25 seconds. Since it is

a short video, the summarization process returns similar

frames, however, with some minor variations in perspective.

In video summarization, the amount of frames remains the

same for all videos and the fluidity of the video is main-

tained. In addition, it is possible to correctly follow the

actions over time without neglecting the video context.

Figure 7 shows the frames selected as Keyframes for

the HSAT method. While Figure 8 illustrates the selected

frames when a sequential selection (with time constraints)

is made. One can observe that in Figure 8 some content is

not present at all. In contrast, HSAT manage to obtain a

greater variety of video content making it easier to describe

different moments of the video. In the sequential selection of

frames, since that video has 80 seconds, it disregards any in-

formation that occurs in the final 30 seconds. In turn, HSAT

uses hierarchical summarization to cover a greater variety

of instants. In this way, HSAT only disregards very similar
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Vanilla Transformer

He continues speaking while holding the violini and showing how to play his hands. He

continues playing the instrument while looking down at the camera. He continues playing the

violin and then stops to speak to the camera.

MART

A man is seen speaking to the camera while holding a violin and begins playing the

instrument. The man continues to paly the instrument while moving his hands up and down. He

continues to play and ends by moving his hands up and down.

Ground-Truth

A man is seen looking to the camera while holding a violin. The man then begins playing the

instrument while the camera zooms in on his fingers. The man continues to play and stops to

speak to the camera.

Adaptive Transformer

A man is seen speaking to the camera while holding a musical instrument and begins playing

the instrument. The man continues to play the instrument while looking off into the distance and

smiling to the camera. He continues moving his hands around to play and showing off the

proper hand as well as showing how to properly play.

EMT

A man is seen speaking to the camera while holding a violin and playing his hands. He then

moves the instrument all around his hands as well as the other hand movements. He continues

playing the instrument and ends by looking back to the camera.

Transformer-XL

A man is seen speaking to the camera while holding a violin. The man continues playing the

instrument while moving his hands up and down. The man continues playing the instrument and

ends by looking back to the camera

(a)

Vanilla Transformer

She continues moving around the room and leads into her speaking to the camera. She

continues moving around on the step and ends by speaking to the camera.

MART

A woman is standing in a room talking. She starts working out on the equipment

Ground-Truth

A woman is seen speaking to the camera and leads into her walking up and down the board.

She then stands on top of the beam while speaking to the camera continuously.

Adaptive Transformer

A woman is in a room in front of a step and performs a routine while speaking to the camera.

She steps up and down on a blue mat.

EMT

A woman is seen speaking to the camera while standing in front of a board. The woman then

begins moving her arms and legs around while still speaking to the camera.

Transformer-XL

A woman is standing in a gym. She begins to do a step

(b)

Fig. 5 Examples (for qualitative analysis) of results obtained by Adaptive Transformer, compared to Vanilla Transformer, Transformer-
XL, MART, EMT and GT results, in which blue/bold indicates the presence of repetition and red/bold indicates a possible pronoun
different form the GT. Best viewed in color.

Fig. 6 A result example of HSAT showing fluidity in movement
variation.

frames that are direct neighbors in time to include more

distinct and meaningful frames for the video description.

Due to the summarization process, the number of frames

Fig. 7 A result example of HSAT with a greater number of dis-
tinct keyframes. In this case, the result should cover more than
one point of view. Even so, the video summarization approach
managed to capture frames that did not appear in a sequential
selection of frames.

Fig. 8 An example of selected frames by a sequential selection
(with time constraints) similar to the approach used in [6].

used can be reduced, generating results as significant as for

techniques with large amounts of frames.

Figure 9 presents a qualitative comparison between the

result obtained by the HSAT with the Adaptive Trans-

former [6]. As one can see, the result is very discriminative

and does not have many repetitions of terms. The results

presented in both situations (9a and 9b) show very approxi-

mate descriptions, but with some points described from an-

other perspective. Thus, as HSAT uses features taken from

different regions of the video and analyzes the importance

of each frame in time, the modifications related to the de-

scription are due to the presence of points that may not

be visualized in the same set of frames used to illustrate
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Adaptive Transformer

A man is seen speaking to the camera while holding a musical instrument and begins playing

the instrument. The man continues to play the instrument while looking off into the distance and

smiling to the camera. He continues moving his hands around to play and showing off the

proper hand as well as showing how to properly play.

HSAT

A man is seen speaking to the camera while holding a violin and the instrument. The man

continues to play and then pauses to speak to the camera. He continues moving his hands

around to play and is seen speaking to the camera.

Ground-Truth

A man is seen looking to the camera while holding a violin. The man then begins playing the

instrument while the camera zooms in on his fingers. The man continues to play and stops to

speak to the camera.

(a)

Adaptive Transformer

A woman is in a room in front of a step and performs a routine while speaking to the camera

She steps up and down on a blue mat.

HSAT

A woman is seen speaking to the camera while standing in front of a board. She begins

moving up and down the board while speaking to the camera.

Ground-Truth

A woman is seen speaking to the camera and leads into her walking up and down the board

She then stands on top of the beam while speaking to the camera continuously

(b)

Fig. 9 Examples (for qualitative analysis) of results obtained by HSAT, compared to Adaptive Transformer and GT results. We use the
same set of frames only to exemplify how video are described.

the video content. In this way, hierarchical summarization

presents itself as a great candidate to improve the descrip-

tions produced for the video captioning task.

4.7 Ablation study

As a way to demonstrate the effectiveness of the proposed

architectures, we modify the memory size from 2 to 1 and

4. And, to ensure the effectiveness of the adaptive attention

after the previous attention module, the removal (in an al-

ternate way) of the adaptive attention modules from the

proposed positions was also analyzed. In addition, with the

modification of memory size, for each variation, the adap-

tive attention module was reassessed. In this way, it was

possible to measure the impact achieved by the inclusion of

adaptive attention as a way to modify both multi-head at-

tention modules. Those changes provide an ablation study,

allowing us to identify the best configuration of the pro-

posed architecture. Table 3 presents the obtained results in

the ablation study of the proposed architecture along with

the original results to facilitate comparison.

The evaluation of the results obtained for the CIDEr-D

score demonstrates the effectiveness of the proposed con-

figuration to the detriment of the others. Furthermore, one

can notice that the reduction of the Repetition-4 score is

relatively low, but for the BLEU-4 there was a slight in-

crease in the score, however, as discussed before, it is not a

good metric for the video captioning task.

5 Conclusion

This work presents a new method named Hierarchical time-

aware Summarization with an Adaptive Transformer – HSAT.

Table 3 Performance in the ae-val split of ActivityNet Cap-
tions during the ablation study for verifying the quality of re-
sults achieved for the proposed architectures in which (∗) denotes
transformer without adaptive attention after the second Multi-
Head Attention, and (+) denotes transformer without adaptive
attention after the first Multi-Head Attention.

Model Mem Size Hidden Size B@4 ↑ CIDEr-D ↑ R@4 ↓
Ours 1 1200 10.55 23.58 5.48
Ours∗ 1 1200 10.28 22.90 6.35
Ours+ 1 1200 10.23 22.25 6.45
Ours 2 1200 10.38 24.22 5.84
Ours∗ 2 1200 10.10 23.55 5.89
Ours+ 2 1200 10.52 23.88 5.97
Ours 4 1200 10.53 23.01 6.69
Ours∗ 4 1200 10.16 22.74 5.80
Ours+ 4 1200 10.43 22.64 6.86

The HSAT presents a strategy to enhance the frame selec-

tion reducing the amount of information that needed to be

processed during the description generation step without

any loss of content. Thus, the summarization process used

before the description generation step as an approach to

evaluate the importance of each frame demonstrated the

effectiveness of the use of the most informative frames in-

stead of selecting frames sequentially. Allied with this, the

processing time to deal with more informative frames is re-

duced because they represent only a small number of frames

that may not even be processed with other techniques. To-

gether with the summarization approach, another improve-

ment in generated descriptions is a consequence of the local

analysis and refinement of the adaptive attention results.

The results achieved by the proposed model surpass those

presented by state-of-the-art methods in the literature and

are equivalent to those obtained by the Adaptive Trans-

former using only a small fraction of the processing time

spent by the latter. Quantitative and qualitative evalua-
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tions showed that the proposed model produces more co-

herent and diversified results, with high similarity with GT

and lower repetition rates.

Future works may explore other attention mechanisms

and different architectures for the transformer’s main back-

bone. It may also be interesting to investigate the impact

of uses reinforcement learning techniques in event detection

and, consequently, in the final video description.
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