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Abstract Superpixel segmentation consists of partitioning

images into regions composed of similar and connected pix-

els. Its methods have been widely used in many computer

vision applications since it allows for reducing the workload,

removing redundant information, and preserving regions

with meaningful features. Due to the rapid progress in this

area, the literature fails to catch up on more recent works

among the compared ones and to categorize the methods ac-

cording to all existing strategies. This work fills this gap by

presenting a comprehensive review with new taxonomy for

superpixel segmentation, in which methods are classified ac-

cording to their processing steps and processing levels of im-

age features. We revisit the recent and popular literature ac-

cording to our taxonomy and evaluate 20 strategies based on

nine criteria: connectivity, compactness, delineation, con-

trol over the number of superpixels, color homogeneity, ro-

bustness, running time, stability, and visual quality. Our

experiments show the trends of each approach in pixel clus-

tering and discuss individual trade-offs. Finally, we provide

a new benchmark for superpixel assessment, available at

https://github.com/IMScience-PPGINF-PucMinas/superpixel-

benchmark.

Keywords superpixel · image segmentation · survey ·
image processing

1 Introduction

Superpixel segmentation aims to divide images into homo-

geneous regions of connected pixels, such that unions of

superpixels compose image objects. It has several bene-

fits, such as reducing the workload (e.g., reducing millions
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ImScience/PUC-Minas – Belo Horizonte 31980-110, Brazil
E-mail: sjamil@pucminas.br

of pixels to thousands/hundreds of superpixels) and pro-

viding higher-level content information than pixels. Conse-

quently, methods for superpixel segmentation are used in

several applications, such as object segmentation [18,56,

87], anomaly detection [78] semantic segmentation [119],

saliency detection [117,120], and image classification [28,

83]. Superpixel segmentation has a vast literature counting

with benchmarks to evaluate and compare methods [72,99,

90,68]. Some works also categorize the methods according to

a given taxonomy [1,90]. However, more recent approaches

with different strategies still need to be covered, leading to

the need for a new taxonomy. This work provides a com-

prehensive review of superpixel segmentation with a new

taxonomy in which the methods are categorized based on

processing steps and processing levels of image features. For

that, we analyze current and classical approaches.

In the literature, several authors identify the superpixel

desired properties. Despite the absence of consensus, most

authors agree that superpixels must be composed of con-

nected pixels, adhere to the objects’ borders, have smooth

contours, and have regularly distributed and compact sha-

pes [90,99]. Moreover, the methods must be computation-

ally efficient and generate a controllable number of super-

pixels. However, superpixel methods usually meet part of

those criteria, which often occurs when the improvement

in a property leads to worse for another property. In this

sense, the choice of an evaluation measure depends on the

optimized property.

In contrast to the rapid progress in new superpixel strate-

gies, the papers usually compare their proposals against

classical approaches. Therefore, there are few comparisons

among state-of-the-art methods, which impairs the judg-

ment of their actual contribution. Furthermore, despite the

extensive comparisons in previous works [72,99,90,89,68],

several recent approaches have not been included. This work

fills this gap by evaluating 20 superpixel segmentation meth-
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ods among the most recently proposed and commonly used

ones. Our assessment covers connectivity, compactness, de-

lineation, color homogeneity, robustness, running time, sta-

bility, control over the number of superpixels, and visual

quality. The results provide valuable insights into the pros

and cons of the methods, supporting the choice of the most

suitable one for a given application.

This paper is organized as follows. Section 2 presents

the essential works that evaluate superpixel methods and

introduce benchmarks. Subsequently, Section 3 describes

the proposed taxonomy and categorizes the most recently

proposed and commonly used superpixel methods. A brief

description of the evaluated methods is presented in Sec-

tion 4 and an extensive discussion covering 54 methods is

presented in Appendix ??. Section 5 defines the experimen-

tal setup, and Section 6 presents our results. Finally, we

draw conclusions and possible future work in Section 7.

2 Related works

The first benchmark for superpixel evaluation [72] com-

pared eight algorithms and evaluated object delineation and

robustness to affine transformations. To overcome the bi-

ased penalty in Under-segmentation Error (UE) measure [52]

caused by the superpixel size, the authors proposed a mod-

ified UE to consider the smallest part of the superpixel

leakage. Also, the evaluated superpixel methods presented

similar results, demonstrating that the most appropriate

methods for each task depend on the crucial characteristics

of that task. In addition, algorithms less focused on com-

pactness showed greater robustness to image transforma-

tions. Unlike Neubert and Protzel [72], Achanta et al. [1]

demonstrate the effectiveness of Simple Linear and Itera-

tive Clustering (SLIC) by comparing five superpixel meth-

ods to determine their benefits and limitations regarding

their boundary adherence and efficiency. Achanta et al. [1]

characterized the superpixel methods as graph-based and

gradient-ascent-based. The former contains methods that

model the segmentation problem based on graph theory

generating superpixels by minimizing a cost function de-

fined on the graph. The second iteratively refines its initial

clusters until reaching a convergence criterion.

Schick et al. [81,82] investigated the importance of com-

pactness in superpixel segmentation. They proposed a com-

pactness measure based on the isoperimetric coefficient [75]

and demonstrated a trade-off between Compactness and

Boundary Recall [67]. The authors argue that a more ac-

curate segmentation would not imply better overall perfor-

mance. Thus, they claim that compact superpixels better

capture spatially coherent information facilitating informa-

tion extraction from their boundaries.

A new benchmark was proposed in [89] with two im-

age datasets and fifteen superpixel methods, including al-

gorithms and datasets that use depth information. Accord-

ing to their evaluation, depth inclusion may not represent

improved results. Regarding visual quality, the authors set-

tled that the high quantitative results in the delineation

assessment do not necessarily reflect the segmentations’ vi-

sual quality. Mathieu et al. [68] argue that more than two

datasets, as used in [89], are needed for an exhaustive eval-

uation. They overcome this with a new dataset, called the

Heterogeneous Size Image Dataset (HSID). The HSID ma-

inly contains large images (with millions of pixels) and al-

lows evaluating the superpixel methods according to the im-

age size. Using the HSID, the authors analyzed the five best

superpixel methods in [89] and Waterpixels [63] method.

The evaluated methods do not achieve a satisfactory trade-

off between adherence to contours, conciseness (smallest

possible number of superpixels), and efficiency. Therefore,

the authors argue that the superpixel method must be cho-

sen according to the necessary superpixels’ characteristics

for the desired task.

Wang et al. [99] proposed a regularity measure for su-

perpixels, allowing the quantitative regularity analysis. The

authors also provided an overview of the superpixel meth-

ods and a benchmark with fifteen state-of-the-art meth-

ods and thirteen evaluation measures, including the pro-

posed one. In [99], the superpixel methods are categorized as

clustering-based (or gradient-based) and graph-based, fol-

lowing the characterization in [1]. According to Wang et

al. [99], methods based on clustering showed greater effi-

ciency, while those based on graphs presented an improved

delineation. However, the running time could have been bet-

ter, and the authors settled that the evaluated algorithms

are hardly applicable in scenarios requiring real-time re-

sponses.

The authors in [90] present a more comprehensive eval-

uation in a benchmark with 28 state-of-the-art superpixel

algorithms with five datasets that include indoor, outdoor,

and people images. In addition to the benchmark, the au-

thors also propose evaluation measures independent of the

number of superpixels and based on existing delineation

metrics: Average Miss Rate (AMR), Average Under-segmen-

tation Error (AUE), and Average Unexplained Variation

(AUV). Stutz et al. [90] evaluated the stability of the meth-

ods, considering the minimum, maximum, and standard de-

viation of each metric; and its robustness to noise, blur, and

affine transformations. Based on the categorization in [1],

they also categorize superpixel methods by their high-level

approach, allowing them to relate their categories to ex-

perimental results. Despite the broad categorization in [90],

the authors settled that some methods in the literature are

not included in their categorization. Based on the proposed

evaluation, they create a ranking of the evaluated methods,

and they recommend six of them: ETPS [109], SEEDS [14],

ERS [59], CRS [24], ERGC [19], and SLIC [1].
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3 Taxonomy of superpixel methods

The existing categorizations for superpixel methods need to

be revisited to cover the wide variety of approaches. Also,

the rapid advance in this area hampers the establishment

of a strict categorization composed of disjoint categories.

In this work, we establish the following statements for an

appropriate categorization: (i) the set of categories must

be sufficient to cover all methods; and (ii) each category

must be specific enough to allow comparing and merging

strategies.

To categorize superpixel methods, a taxonomy based on

different and non-strict aspects may be more appropriate

to establish well-defined categories that respect both pre-

vious statements. Therefore, instead of providing a strict

set of categories, we establish a taxonomy that categorizes

methods according to their processing steps and the level of

abstraction of the characteristics used. In addition, we also

report the desired superpixel properties that each method

satisfies.

3.1 Processing steps

To provide a comprehensive taxonomy with a more realis-

tic representation, we identified that superpixel algorithms

generally have up to three steps: (i) initial processing; (ii)

main processing; and (iii) final processing. In initial pro-

cessing, the superpixel methods usually perform seed sam-

pling, an initial image partition, or feature extraction. The

main processing contains the strategy for superpixel com-

putation. We avoid dividing a loop into different process-

ing steps. Therefore, the main processing includes the whole

loop for superpixel generation, if any. Finally, post-processing

operations are usually performed at the final step to ensure

superpixel connectivity or to fine-tune the segmentation.

The processing steps divide superpixel approaches into

specialized procedures, allowing their comparison. We iden-

tify categories that broadly define the process performed at

each processing step in 52 superpixel segmentation meth-

ods. The categories shown in Table 1 identify the main

processing of the analyzed methods that do not use neu-

ral networks. These categories were defined based on the

main processing to obtain superpixels.

In the superpixel literature, some proposals encompass

neural network architectures. In our analysis, the only neu-

ral architecture identified was the convolutional one. We

classified the network in those methods according to its ar-

chitecture and output. Moreover, these networks may not

produce superpixels directly, relying on a differential clus-

tering module for this [121,105,98] or only performing fea-

ture extraction [32,74]. Therefore, one could classify their

purpose as (i) feature extraction, (ii) segmentation with a

differential module, or (ii) superpixel segmentation. Super-

pixel segmentation is also used as input of convolutional

networks for segmentation refinement. However, methods

with this approach perform object segmentation [44,43,16,

57].

3.2 Processing level of image features

Superpixel methods can compute features on-the-fly or ob-

tain them from other algorithms. Several approaches ex-

tract information from the same features differently. For

example, some methods combine local features (e.g., color

and pixel position) with higher-level ones (e.g., edge or se-

mantic information) in their optimization function [116,13,

102]. On the other hand, others can extract abstract knowl-

edge (e.g., using strategies based on graph theory or linear

algebra) by exploring only local information [21,12,31]. De-

spite this, for superpixel segmentation, there was no study

in this regard. Such a study is beyond the scope of this work.

However, the taxonomy proposed here also categorizes the

methods according to the processing level of the character-

istics used. To categorize a superpixel method based on the

processing level of the image features, we assign the highest

level used. The categories were defined as follows:

– Pixel-level features: Raw data resources in images —

e.g., pixel color, position, and depth;

– Mid-level features: features that can be computed

based on a set of pixels, smaller than the entire image —

e.g., patch-based feature, path-based feature, gradient,

or boundary;

– High-level features: features that combine pixel prop-

erties and high-level information. The high-level infor-

mation cannot be extracted from a small set of pixels.

They are given directly by the user or predicted by other

models — e.g., saliency map, semantic features, texture,

or a desired object geometry;

3.3 The proposed taxonomy in superpixel literature

Table 2 presents superpixel methods categorized by the pro-

posed taxonomy, color space, and inspiration method. In the

processing steps, we specified categories according to the

high-level purpose. In superpixel approaches whose paper’s

proposal contains Convolutional Neural Networks (CNN),

we inform the network architecture (arch) and its output

(out).

According to our analysis (in Table 2), most superpixel

methods do not have CNNs in any processing step and

perform Seed sampling in their initial processing. Further-

more, most networks produce superpixels directly [91,110,

108,97,112]. Conversely, others rely on a differential clus-

tering module [98,105,121,115] or only perform feature ex-

traction, requiring further superpixel clustering [74,32]. The

Clustering Method category in Table 2 indicates processing
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Table 1 Main processing categories excluding methods based on neural networks
Categories Explanation

Neighborhood-based clustering
Performs clustering based on the similarity between pixels re-
stricted to a maximum spatial distance from some reference
point in the image.

Boundary evolution clustering
These algorithms iteratively update the superpixels’ boundaries
to improve their superpixels, usually using a coarse-to-fine image
block strategy.

Dynamic-center-update clustering
The dynamic-center-update algorithms perform clustering with
a distance function based on the features of the clusters, dynam-
ically updating their centers.

Path-based clustering
Path-based approaches generate superpixels by creating paths in
the image graph based on some criteria. Usually, its clustering
criterion is a path-based function to optimize during clustering.

Hierarchical clustering
These algorithms create regions in the image that form a hier-
archical structure, obeying the criteria of locality and causal-
ity [41].

Density-based clustering
The superpixel methods rely on an optimization function to find
the cluster centers, modeling the problem of finding superpixels
in a problem of finding density peaks.

Sparse linear system clustering
Model the segmentation problem with a sparse matrix and use
its properties to find superpixels.

Data distribution-based clustering
The approach assumes that the image pixels follow a specific
distribution and perform the clustering based on this conjecture.

Regional feature extraction
Iteratively extracts regional features to perform clustering based
on these features.

Polygonal decomposition clustering
Segmentation in these methods consists of decomposing the im-
age into non-overlapping polygons.

Graph-based clustering Perform superpixel segmentation based on graph topology

steps that use another superpixel method. Regarding the

CNN architectures, most networks have a Fully Convolu-

tional Network (FCN) [98,110,91] or an Encoder-Decoder [32,

108,97]. However, there are other architectures, such as an

Interpolation Network [112], a Multiscale CNN [74,115],

and a Weight-shared CNN [105].

Regarding methods without CNNs, SLIC or SLIC’s vari-

ants inspired most of them. Furthermore, the most common

main and final processings are the Neighborhood-based clus-

tering and Merging step, respectively. Nevertheless, Bound-

ary evolution, Dynamic-center-update, and Path-based clus-

tering are also frequent. The Boundary Evolution strategy

is usually the most efficient since it updates only the su-

perpixels’ boundaries, which may enforce their connectiv-

ity [17,14,24,109,106,113,76]. Similarly, most approaches

with a Dynamic-center-update clustering guarantee connec-

tivity during the clustering process, usually using a priority

queue to find the best candidates for each superpixel [2,

35,48,54,61,118,100]. Path-based clustering methods iter-

ate over pixels similarly, but their superpixels are spanning

trees that optimize a path-based function [19,94,20,12,13,

11]. Most of these methods are based on the Image Forest-

ing Transform (IFT) framework or its variants. In this work,

we also consider Hierarchical approaches since they produce

segmentations that conform to the abovementioned proper-

ties for superpixels [31,25,74,103]. Methods that perform

Hierarchical clustering have the advantage of computing all

hierarchy levels in a single execution, generating multiple

segmentations for the same image.

4 Superpixel segmentation methods

Superpixel segmentation has a vast literature covering sev-

eral techniques. In [90] a benchmark for superpixels is pro-

vided with an extensive evaluation of methods. Neverthe-

less, due to the rapid progress in developing new strategies

for superpixel segmentation, an analysis of the most recent

proposals becomes essential. This section reviews recent and

commonly used literature on superpixel segmentation. For

an extensive review, see Appendix ??.

4.1 Neighborhood-based clustering

Neighborhood-based methods for superpixel segmentation

perform clustering of image pixels based on the similarity

between pixels restricted to a maximum spatial distance

from some reference point in the image. For example, several

methods constrain the clustering region of a superpixel to

a fixed-size image patch around this superpixel [1,93,104,

58].

4.1.1 SLIC

SLIC [1] starts with a grid sampling of superpixel centers

and iteratively assigns to each superpixel the most similar
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Table 2 Recent methods for superpixel segmentation

Time
complexity

Features

Method
It
er
a
ti
v
e

#
It
er
.

#
S
u
p
er
p
.

C
o
n
n
ec
.

C
o
m
p
a
ct
.

S
u
p
er
v
.

Color Initial processing Main processing Final processing

P
ix
.

M
id
.

H
ig
h
.

Inspired

SLIC [1] X X X X 2 X CIELAB Seed sampling
Neighborhood-based

clustering
Merging step X

LSC [55] X X X X 2 X CIELAB 𝑂(𝑘𝑛+ 𝑛𝑧) 8 Seed sampling
Neighborhood-based

clustering
Merging step X

SCALP [34] X X X X X CIELAB Seed sampling
Neighborhood-based

clustering
X SLIC [1]

TASP [104] X X X CIELAB Seed sampling
Neighborhood-based

clustering
X SLIC [1]

MFGS [58] X1 X X CIELAB Seed sampling
Neighborhood-based

clustering
Merging step X SLICO [1]

DSR [116] X X X CIELAB Seed sampling
Neighborhood-based

clustering
Merging step X dSLIC [64]

Semasuperpixel [102] X X X X2 X CIELAB
arch: Encoder-decoder
out: Semantic map

Neighborhood-based
clustering

Merging step X SLIC [1]

AWkS [42] X X X CIELAB Seed sampling
Neighborhood-based

clustering
Merging step X W-k-means [45]

IBIS, IBIScuda [17] X X X2 X CIELAB 𝑂(𝑛) Grid segmentation
Boundary evolution

clustering
Merging step X SLIC [1]

SEEDS [14,15] X X X X CIELAB Grid segmentation
Boundary evolution

clustering
X

CRS [24] X X X X X YCrCb Grid segmentation
Boundary evolution

clustering
X CR [39,69]

ETPS [109] X X X X X RGB Grid segmentation
Boundary evolution

clustering
X SEEDS [14]

CFBS [106] X X X X CIELAB Grid segmentation
Boundary evolution

clustering
X SLIC [1]

SCAC [113] X1 X X CIELAB Grid segmentation
Boundary evolution

clustering
Boundary evolution

clustering
X WSBM [114]

LSC-Manhattan [76] X X X X Classification
Boundary evolution

clustering
X LSC [21]

SNIC [2] X X X CIELAB 𝑂(𝑛) Seed sampling
Dynamic-center-update

clustering
X SLIC [1]

CONIC [35] X X X CIELAB 𝑂(𝑛) Seed sampling
Dynamic-center-update

clustering
X

SNIC [2],
SCALP [34]

DRW [48] X X 𝑂(𝑛) Seed sampling
Dynamic-center-update

clustering
Label propagation X RW [37]

FCSS [54] X X1 X X2 X CIELAB 𝑂(𝑛+ 𝑛𝑡)4
Dynamic-center-update

clustering
X SNIC [2]

F-DBSCAN [61] X X CIELAB 𝑂(𝑛)
Dynamic-center-update

clustering
X RT-DBSCAN [36]

SCBP [118] X X X RGB 𝑂(𝑛)
Dynamic-center-update

clustering
Merging step X DBSCAN [86]

A-DBSCAN [100] X X X RGB 𝑂(𝑛) Compute features
Dynamic-center-update

clustering
Merging step X DBSCAN [86]

ERGC [19] X X CIELAB Seed sampling Path-based clustering X
ISF [94] X X X X X CIELAB 𝑂(𝑛 log𝑛) Seed sampling Path-based clustering X IFT [27]
RSS [20] X X X 𝑂(𝑛) Seed sampling Path-based clustering X IFT [27]
DISF [12] X X X CIELAB 𝑂(𝑛 log𝑛) Seed oversampling Path-based clustering X ISF [94]

ODISF [13] X X X CIELAB 𝑂(𝑛 log𝑛) 6 Seed oversampling Path-based clustering X
DISF [12],
OISF [10]

SICLE [11,9] X X 1 X X CIELAB 𝑂(𝑛 log𝑛) 6 Seed oversampling Path-based clustering X ODISF [13]
SH [103] X X RGB 𝑂(𝑛) Hierarchical clustering X

UOIFT [8] X X CIELAB Clustering method Hierarchical clustering X
IFT [27],
OIFT [65]

HMLI-SLIC [25] X X X1 X X CIELAB 𝑂(𝑛𝑑) 5 Clustering method Hierarchical clustering Merging step X SLIC [1]

RISF [30,31] X X X X X CIELAB Hierarchical clustering
Hierarchical

region merging
X ISF [94]

DAL-HERS [74] X X X RGB 𝑂(𝑛)3
arch: Multi-scale
Residual CNN

out: Affinity map
Hierarchical clustering X

SEAL [92],
ERS [59]

PGDPC,
SLIC-PGDPC

[38] X X CIELAB 𝑂(𝑛 log𝑛) Seed sampling Density-based clustering X DPC [95]

DPS [85] X1 CIELAB Compute features Density-based clustering Clustering method X DP [80]

ANRW [96] X X CIELAB 𝑂(𝑛2) Seed sampling
Sparse linear

system clustering
X NRW [111]

GL𝑙1/2RSC [29] X X Clustering method
Sparse linear

system clustering
Encoding procedure X CAWR [101]

SCSC [53] X X X RGB Clustering method
Sparse linear

system clustering
Clustering method X

EAM [4] X1 X RGB 𝑂(log2 𝑛) Noise remotion
Regional attributes

extraction
Merging step X

ECCPD [62] X X X X RGB Seed sampling
Polygonal decomposition

clustering
Boundary evolution

clustering
X

GMMSP [5]
gGMMSP [6]

X X X1 X2 X CIELAB 𝑂(𝑛) 7 Data distribution-based
clustering

Merging step X SCGAGMM [47]

ERS [59] X X RGB Graph-based clustering X

E2E-SIS [98] X X2 X CIELAB
arch: FCN

out: Superpixels
Superpixel pooling layer

and merging step
X

DEL [60],
SSN [46]

ss-RIM [91] X1 RGB
arch: FCN

out: Image reconstruction
and Superpixels

X
DIP [51],
RIM [50]

EW-RIM [110] X X X RBG
arch: FCN

out: Image reconstruction
and Superpixels

X
ss-RIM [91],
DIP [51]

SEN [32] X RGB
arch: Encoder-Decoder
out: Deep embeddings

Clustering method X RPEIG [49]

SSFCN [108] X1 X CIELAB
arch: Encoder-Decoder

out: Superpixels
Merging step X SSN [46]

SENSS [97] X1 X X X CIELAB
arch: Encoder-Decoder

out: Superpixels
X SSFCN [108]

DAFnet [105] X X X CIELAB
arch: Weight-shared CNN

out: Superpixels
X SSFCN [108]

LNS-net [121] X X LAB/RGB
arch: FCN

out: Image reconstruction
and Superpixels

Merging step X

SIN [112] X1 X X
arch: Interpolation Network

out: Superpixels
X

BP-net [115] X X RGB-D Seed sampling

arch: Multi-scale CNN
and FCN

out: Boundary map
and superpixels

Merging step X

1 Partially, 2 With post-processing, 3 Time complexity in HERS module, 4 𝑡 is the number of relocations, 5 𝑑 is the number of hierarchy levels, 6

Without the saliency map computation, 7 Without parallelization, 8 𝑘 is the number of iterations and 𝑧 represents the number of small isolated
superpixels to be merged.
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pixels in a limited region around the superpixel center. As

post-processing, SLIC ensures connectivity by assigning un-

connected superpixels to their nearest neighbors. SLIC re-

duces the segmentation complexity to linear concerning the

number of pixels. Also, its distance function gives better

control over the superpixel size and compactness. Although

SLIC presents fair delineation and efficiency, it does not

consider the relationship between adjacent pixels, resulting

in worse delineation in regions with complex textures.

4.1.2 LSC

The authors [55,21] investigated the relationship between

the normalized cuts [79] and the weighted K-means to pro-

pose the LSC, which uses an NCut function that can obtain

the same optimum result as the weighted kernel K-means.

The LSC applies a kernel function to map pixels into a 10-

dimensional feature space in a fixed limited region. LSC

provides an efficient segmentation method and it obtains

regular shapes. It also has linear time complexity with high

memory efficiency. By considering a shape constraint, LSC

achieves high boundary adherence without sacrificing spa-

tial compactness. However, its fixed search range prevents

LSC from ensuring connectivity, requiring post-processing.

4.1.3 SCALP

SCALP [33] considers image features and contour inten-

sity on a linear path to the superpixel barycenter to im-

prove SLIC’s distance function with neighborhood informa-

tion. It integrates the contour prior information as a soft

constraint in the color distance to improve the adherence

to the object boundaries and performs clustering in high-

dimensional feature space [55]. SCALP is efficient, robust
to noise, and produces compact superpixels. The authors

further improve SCALP [34] with a hard constraint based

on the contour prior to providing an initial segmentation.

The hard constraint increases SCALP’s robustness and its

boundary adherence, but it slightly reduces regularity and

smoothness.

4.2 Boundary evolution clustering

In boundary evolution clustering, the algorithm iteratively

updates the superpixels’ boundaries to improve delineation,

usually using a coarse-to-fine image block strategy. SEED-

S [14] and ETPS [109] are examples of superpixel methods

using the boundary evolution strategy for clustering.

4.2.1 SEEDS

SEEDS [15] start from a regular grid partitioning and itera-

tively refine the superpixels’ boundaries. The iterative pro-

cess follows a coarse-to-fine approach with a hill-climbing al-

gorithm for optimization. SEEDS is an efficient method that

performs optimization based on a hill-climbing algorithm.

SEEDS introduces an energy function that encourages color

homogeneity, shape regularity, and smooth boundary shapes.

However, the compactness constraint degrades the results,

and the number of superpixels is challenging to control.

4.2.2 CRS

CRS [24] formulates the segmentation problem as an es-

timation task and transforms the model in [70,40] into a

superpixel approach. From an initial image partition, CRS

generates superpixels under the constraint of maximum tex-

ture homogeneity inside of each image patch and maximum

accordance of the contours with both the image content and

a Gibbs-Markov random field model. CRS explicitly mod-

els the superpixel’s shape and content as a statistical model,

allowing it to handle an arbitrary number of feature chan-

nels. In addition, CRS allows direct control of the number

of superpixels and their compacity.

4.2.3 ETPS

Inspired by SEEDS [14], ETPS [109] performs a coarse-to-

fine approach to superpixel segmentation, starting from a

grid partitioning. ETPS uses a priority list to optimize its

energy function. Also, despite its energy function being at

the pixel level, it measures shape regularization, color homo-

geneity, and smoothness of the contours. In addition, ETPS

enforces connectivity and minimum size during the opti-

mization process. The authors also presented a stereo ver-

sion of the proposal and demonstrate that ETPS’ efficiency

surpasses SLIC [1]. Compared to [107], ETPS achieves a

better convergence value in a single iteration.

4.2.4 IBIS

IBIS [17] starts with a grid segmentation and, using a SLIC’s

distance measure [1], compares the pixels located on the

edge of the blocks, subdividing in 4 those blocks assigned to

another superpixel. At each iteration, pixels in non-homo-

geneous blocks are assigned to the nearest superpixel ac-

cording to the SLIC’s distance measure. After the clustering

step, IBIS performs the same merging stage as SLIC. The

paper also presents a GPU variant aimed at real-time use

cases, the IBIScuda. IBIS is faster than other methods and

achieves similar results as SLIC. Also, its Cuda version can

even improve its efficiency, reducing computational time.

However, similar to SLIC, the IBIS’s boundary adherence

and accuracy are not competitive with other methods in the

literature.
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4.3 Dynamic-center-update clustering

The dynamic-center-update algorithms perform clustering

with a distance function based on the features of the clus-

ters, dynamically updating its centers. Unlike neighborhood-

based clustering, this approach does not perform a limited

regional search to calculate distances.

4.3.1 SNIC

SNIC [2] intends to overcome SLIC’s limitations. The pro-

posal starts with a sampling grid, but it dynamically up-

dates the centroids during the clustering process. Further-

more, instead of searching limited to an image patch, SNIC

uses a priority queue to group neighboring pixels — sim-

ilar to a path-based approach, but with a distance func-

tion based on the superpixel centroid. Due to its clustering

process based on neighboring pixels, SNIC enforces con-

nectivity without requiring post-processing. Furthermore,

SNIC requires less memory and is computationally more ef-

ficient than SLIC. The authors also proposed an algorithm

for polygonal segmentation called SNICPOLY, which starts

with superpixels generated with SNIC.

4.3.2 DRW

The DRW [48] model uses dynamic nodes, which reduces

the redundant calculation by limiting the walking range.

The proposed algorithm performs a new seed initialization

strategy that creates a seed set with regular distribution

in both 2D and 3D and can combine boundary prior infor-

mation, such as gradient information or boundary proba-

bility [67]. DRW computes superpixels in linear time and

allows control of the distribution of superpixels in complex
and homogenous image regions. The proposed segmentation

method has competitive performance and it is faster than

existing RW models. However, DRW segmentation does not

produce compact superpixels.

4.4 Path-based clustering

Path-based approaches generate superpixels by creating pa-

ths in the image graph based on some criteria. Usually,

their clustering criteria are a path-based function to op-

timize during clustering. The ISF [94] is an example of a

path-based method that calculates a forest of optimal paths

based on a path cost function.

4.4.1 ERGC

First, the proposed ERGC [19] simplifies Computed Tomog-

raphy (CT) images by computing superpixels based on the

Eikonal algorithm. The superpixels start from seeds sam-

pled in a regular grid and evolve according to the Fast

Marching algorithm [84]. ERGC creates homogeneous su-

perpixels with a spatial constraint to enforce compactness.

The proposal demonstrated more efficiency and effective-

ness than other methods of its period, in addition to be-

ing extensible to supervoxels and allowing control over the

number of superpixels and compactness.

4.4.2 ISF

Based on IFT [27], the ISF [94] framework combines a seed

sampling strategy, a connectivity function, an adjacency re-

lation, and a seed recomputation procedure. The proposal’s

algorithm starts with (i) a seed sampling, followed by (ii)

a spanning forest computed by the IFT algorithm, and (iii)

a seed recomputation procedure. The ISF refines the seg-

mentation by iteratively executing steps (ii) and (iii). The

computational complexity of the ISF framework using a bi-

nary heap is linearithmic, independent of the number of su-

perpixels. The computational cost can be reduced by using

the Differential Image Foresting Transform (DIFT) [26,23,

22] to compute the IFTs. However, the DIFT’s effectiveness

depends on the cost function used. In [94], the authors com-

bine different components to present five ISF-based meth-

ods. They also demonstrated that ISF produces effective

and efficient methods independent of the dataset.

4.4.3 RSS

The RSS [20] method follows the IFT [27] algorithm and can

form a forest with optimal costs. To measure color similarity

and spatial closeness, the authors proposed two path-based

cost functions, that have proven to be more robust than the

geodesic distance. Inspired by counting sort and bucket sort,

the RSS computes optimal forest with buckets of queues

and groups of seeds in an IFT [27]-based algorithm. Due

to the sorting strategy, the proposal has 𝑂(𝑁) complexity.

The proposal is fast and has competitive performance. The

main strengths of RSS are the low computational complex-

ity, great boundary adherence with stable performance, and

adjustable compactness. However, besides the proposal ex-

tends to supervoxel segmentation, it performs poorly com-

pared with the evaluated methods. Also, due to the initial

seed sampling in a regular grid [1], RSS generates more su-

perpixels in homogenous regions, which leads to a degrading

in boundary adherence in complex regions.

4.4.4 DISF

Based on ISF [94], DISF [12] is a three-step superpixel

framework that improves its delineation even for fewer su-

perpixels. The proposal initializes with a seed over-segmen-

tation that performs grid sampling [1] for a high number of

seeds. Then, iteratively compute a forest rooted at the seeds
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with an IFT [27] execution followed by a seed set reduction

by choosing the most relevant seeds. The IFT computa-

tion and seed set reduction are repeated until achieves the

desired number of superpixels. DISF has an optimal delin-

eation, especially for a few numbers of superpixels. There-

fore, the proposal’s segmentation is able to correctly selects

relevant seeds, reducing its boundary adherence degrada-

tion when decreasing the number of final superpixels. De-

spite its iterative process increasing the running time, DISF

performs a reduced and limited number of iterations. How-

ever, the proposal does not produce compact superpixels.

4.4.5 ODISF

Motivated by OISF [10] performance, ODISF [13] extends

DISF [12] for an object-based proposal to improve the su-

perpixel performance using object saliency maps. The pro-

posal performs the same three-step pipeline in DISF. First,

the ODISF performs a seed oversampling. Then, it itera-

tively computes a spanning forest rooted at the seed set

with an IFT [27] execution followed by an object-based

seed removal. In the remotion step, the algorithm main-

tains seeds closer to the object saliency boundaries or with

higher saliency. The saliency maps were created using a U2-

net [77]. The proposed method demonstrates a generaliza-

tion ability by performing an effective superpixel segmen-

tation in datasets with different object properties. Also, it

demonstrates robustness to saliency map errors in compar-

ison with OISF. Despite the ODISF delineation step being

saliency-independent, its object-based removal strategy can

circumvent the saliency errors. On the other hand, the OD-

ISF does not allow controlling the number of iterations.

Also, despite its computational complexity, it has a high

running time, being faster only than the OISF.

4.4.6 SICLE

SICLE [11] generalizes ODISF [13] to control the num-

ber of iterations and to improve efficiency and delineation

for poorly estimated saliency maps. SICLE starts with an

(i) seed oversampling; and iteratively generates superpixels

by (ii) computing the minimum forest rooted at the seed

set [27], followed by the (iii) removal of the less relevant

seeds. Similar to ODISF, SICLE incorporates saliency infor-

mation during the seed removal step being robust to incor-

rect saliency estimations. However, SICLE’s seed removal

strategy allows controlling the number of iterations and

avoids unnecessary iterations, improving efficiency. Since

SICLE uses object information only on the removal step,

its delineation is robust to saliency errors. However, SICLE

cannot improve its delineation performance for more accu-

rate saliency estimators. The authors overcome this draw-

back in [9], by encompassing a path cost function and a seed

removal strategy to control the impact of object saliency

information using a binary parameter. The proposal main-

tains its robustness for low-quality estimators and exploits

the accurate information of high-quality estimators, improv-

ing performance with only two iterations. Despite the ro-

bustness and efficiency of SICLE, errors in the saliency map

can still affect its results.

4.5 Hierarchical clustering

Hierarchical segmentation methods are generally not men-

tioned in the literature as superpixel methods. However,

they fit most definitions for superpixels. Although hierar-

chical methods do not obtain a compact or regular segmen-

tation, the regions produced are generally homogeneous.

Furthermore, from the generated hierarchy, it is possible

to control the desired number of regions without increasing

the execution time.

4.5.1 SH

SH [103] uses the Bor̊uvka algorithm to efficiently compute

a minimum spanning tree (MST) in a bottom-up manner

representing a hierarchy. To improve efficiency, SH uses edge

contraction, contracting each tree to a vertex and record-

ing the edge selection order. Also, to improve accuracy with

local searching, SH incorporates edge information from an

edge detector and combines it with color information. In

experiments, SH achieved high accuracy and low computa-

tional time. The authors also demonstrate the SH’s effec-

tiveness in saliency detection, semantic segmentation, and

stereo-matching. However, SH does not produce regular su-

perpixels.

4.5.2 DAL-HERS

DAL-HERS [8] is a two-stage superpixel framework that

consists of a Deep Affinity Learning (DAL) neural network

architecture and a Hierarchical Entropy Rate Segmenta-

tion (HERS) method. The DAL network aggregates multi-

scale information to learn pairwise pixel affinities, and the

HERS method builds a hierarchical tree structure by max-

imizing the graph’s entropy rate. Using the DAL’s affinity

map, the proposed HERS algorithm constructs a hierar-

chy with Bor̊uvka’s algorithm [103]. The proposal preserves

fine details on the objects by focusing on rich-structure

parts rather than uniform regions, producing large super-

pixels in homogeneous regions and an over-segmentation in

texture-rich regions. Also, compared with deep-based learn-

ing methods, the DAL-HERS running time is competitive,

and it requires the same 𝑂(𝑁) time to produce any num-

ber of superpixels. Due to the highly adaptive nature of the

produced superpixels, delineating fine details, the proposal

has a low ASA score.
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4.6 Graph-based, Data distribution-based, and
CNN-based clustering

In superpixel segmentation, we name data distribution-based

methods the approaches that assume that the image pixels

follow a specific distribution. From this initial conjecture,

the clustering step is performed. As far as we know, the

distribution-based methods that perform superpixel seg-

mentation are based on the gaussian mixture model and

assume that the image pixels follow a Gaussian distribu-

tion. Conversely, Graph-based clustering methods perform

superpixel segmentation based on graph topology. Finally,

we present LNSNet which uses a Lifelong learning strategy

for superpixels generation.

4.6.1 ERS

ERS [4] is a greedy algorithm that efficiently computes

the entropy rate of a random walk on the image graph.

The ERS’s objective function is composed of an entropy

rate term and a balancing term of the cluster distribution.

While the entropy rate favors compact and homogeneous

clusters, the balancing term encourages clusters with simi-

lar sizes. The authors demonstrated that ERS outperforms

other methods in accuracy with less pixel leakage. The bal-

ancing term in ERS produces superpixels more similar in

size and enforces control over the number of superpixels.

However, they are irregular in shape.

4.6.2 GMMSP

GMMSP [5] models superpixel segmentation as a weighted

sum of Gaussian functions, each one corresponding to a su-

perpixel. The proposal produces superpixels of similar size

by using a constant weight for the weighted sum of Gaus-

sians. It also imposes two parameters during the expectation-

maximization iterations to prevent singular covariance ma-

trices and control superpixel regularity. GMMSP has a re-

duced computational complexity by using only a subset of

pixels to estimate the parameters of a Gaussian function.

The proposal has well-balanced accuracy and regularity but

does not allow direct control over the number of superpixels.

Also, GMMSP may produce irregular superpixels on strong

gradient regions.

4.6.3 LNSNet

LNSNet [121] is an unsupervised CNN-based method that

learns superpixels in a lifelong manner. It is composed of

three major modules: a feature embedder module (FEM), a

gradient rescaling module (GRM), and a non-iterative clus-

tering module (NCM). FEM embeds the original feature

into a cluster-friendly space. The NCM uses the embedded

features to estimate the optimal cluster centers and assigns

pixel labels based on similarity. Finally, the GRM solves the

forgetting caused by lifelong learning during the backprop-

agation step using a Gradient Adaptive Layer (GAL) and a

Gradient Bi-direction Layer (GBL). LNSNet demonstrates

a high generalization capacity and generates competitive

superpixels using less complex and computationally faster

architecture. However, the proposal has some drawbacks.

First, the proposed model cannot reach a complete con-

vergence, due to the sequential training strategy, requiring

post-processing to remove trivial regions. Secondly, GBL’s

boundary map may contain noises and lead to irregular su-

perpixels when facing a background with a complex texture.

Finally, the clustering step requires a distance matrix, which

is inefficient when calculated by a CPU with a large number

of superpixels.

5 Experimental setup

5.1 Methods and datasets

In this work, we identified 14 open source codes from the re-

cent superpixel literature: DISF [12], RSS [20], ODISF [13],

IBIS [17], DRW [48], DAL-HERS [74], ISF [94], GMMSP [5],

SCALP [34], SNIC [2], SH [103], LNSNet [121], SICLE [9],

and LSC [21,55]. In addition, we include the 6 methods rec-

ommended as state-of-the-art in [90]: SLIC [1], SEEDS [14],

ERS [59], ETPS [109], CRS [24], and ERGC [19]. Finally, a

grid segmentation (GRID) was used as a baseline. Regard-

ing implementation, we used the code of SEEDS, CRS, and

ERGC available in the benchmark of Stutz et. al [90]. Also,

we implemented grid segmentation. For the other methods,

we use the original authors’ code. Furthermore, we set the

parameters according to the recommended ones in their re-

spective articles and we did not perform fine-tuning. All

evaluated methods allow some control over the number of

superpixels generated. In our experiments, we assess seg-

mentations with 𝐾 ≈ {25, 50, 75, 100, 200, 300, 400, 500,

600, 700, 800, 900, 1000} desired superpixels, except for the

robustness evaluation, with only 𝐾 ≈ 400 superpixels.

We selected four different datasets which impose differ-

ent challenges for superpixel segmentation: Birds [66]; In-

sects [66]; Sky [3]; and ECSSD [88]. Birds [66] consists of

150 natural images of birds with thin and elongated ob-

jects’ parts. Similarly, Insects [66] has 130 images of inver-

tebrates with less texture on background regions. Sky [3]

has 60 images for sky segmentation with large homogeneous

regions with subtle luminosity variations. Finally, the Ex-

tended Complex Scene Saliency Dataset (ECSSD) [88] is

composed of 1000 images with objects and backgrounds

whose textures are complex.
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5.2 Evaluation measures

In general, the measures for superpixel evaluation can be

divided into measures that evaluate: (i) superpixel delin-

eation; (ii) its shape; or (iii) its color homogeneity. The de-

lineation measures evaluate the overlap of the superpixel

boundaries with the image object. The delineation-based

evaluation is widespread in superpixel segmentation since

the oversegmentation of the object and background regions

is not penalized. On the other hand, the quality of the super-

pixels inside these regions is also not evaluated [90]. In this

work, we evaluated boundary delineation using Boundary

Recall (BR) [67] and Undersegmentation Error (UE) [72].

For color homogeneity assessment, we used the Similarity

between Image and Reconstruction from Superpixels (SIRS)

[7] and Explained Variation (EV) [71]. Finally, we assess su-

perpixels’ compactness using the Compactness index (CO)

[81].

Boundary Recall (BR) [67] is a widely used measure for

superpixel evaluation. It measures the fraction of ground-

truth boundary pixels correctly detected, as presented in

Equation 1, where TP is the number of boundary pixels

that match in a segmentation 𝑆 and a ground-truth 𝐺, and

FN is the number of boundary pixels in 𝐺 that does not

match with 𝑆. The boundary pixels are matched within a

local neighborhood of size (2𝑟 + 1)2, in which 𝑟 is 0.0025

times the image diagonal.

BR(𝑆,𝐺) =
TP(𝐺,𝑆)

TP(𝐺,𝑆) + FN(𝐺,𝑆)
(1)

Another widely used measure to assess the quality of

superpixel segmentation delineation is the Undersegmenta-

tion Error (UE). Introduced by [52], the UE measures the
adherence of the boundary pixels in 𝑆 to the 𝐺 contours

based on the area between 𝑆 and 𝐺 regions. UE has differ-

ent versions [90]. The most recommended was proposed by

[72] that evaluated the adherence to contours based on the

minimum area of overlap between 𝑆 and 𝐺, as presented in

Equation 2, where 𝑁 is the number of pixels 𝐺 and 𝑘 is the

number of regions in 𝐺.

UE(𝑆,𝐺) =
1

𝑁

𝑘∑︁
𝑖

∑︁
𝑆𝑗∩𝐺𝑖 ̸=∅

min{|𝑆𝑗 ∩𝐺𝑖|, |𝑆𝑗 −𝐺𝑖|} (2)

Shape-based evaluation metrics assess whether the su-

perpixels have compact shapes with smooth contours and

are arranged regularly — i.e., in a grid. Although these

properties have an inverse relationship to the delineation, an

improved boundary recall does not necessarily imply better

segmentation [81,82]. Due to this, the quality of the super-

pixel methods has been evaluated in previous benchmarks

according to the trade-off between its shape quality and

delineation [89,99].

The Compactness index (CO) [81] measure uses the isoperi-

metric quotient to measure the similarity between the shape

of a superpixel and a circle, which constitutes the most

compact geometric shape. The CO measure is presented

in Equation 3, in which 𝐴(𝑆𝑗) and 𝑃 (𝑆𝑗) are the superpixel

area and perimeter, respectively.

CO(𝑆) =
1

𝑁

∑︁
𝑆𝑗

|𝑆𝑗 |
4𝜋𝐴(𝑆𝑗)

𝑃 (𝑆𝑗)
(3)

Although the desired properties of superpixels are not a

consensus in the literature, the inner color similarity usu-

ally underlies their methods. The Explained Variation [71]

defines homogeneity by comparing the variance of the su-

perpixels’ mean color 𝜇(𝑆𝑖) and the variance of the pixels’

color 𝐼(𝑝) towards the image’s mean color 𝜇(I), resulting in

a normalized measure (Equation 4). This measure is maxi-

mum when |𝑆| = |I| or when 𝐼(𝑝) = 𝜇(𝑆𝑖) for all 𝑝 ∈ 𝑆𝑖 and

for every 𝑆𝑖 ∈ 𝑆. However, EV considers the superpixels’

mean color, which is insufficient for describing perceptually

homogeneous textures [71].

𝐸𝑉 (𝑆) =

∑︀
𝑆𝑖∈𝑆 |𝑆𝑖| ‖𝜇(𝑆𝑖) − 𝜇(I)‖21∑︀

𝑝∈I ‖𝐼(𝑝) − 𝜇(I)‖21
(4)

To overcome the mean color drawback, the Similarity be-

tween Image and Reconstruction from Superpixels (SIRS) [7]

models the color homogeneity problem as an image recon-

struction problem. The color descriptor RGB Bucket De-

scriptor (RBD) represents each superpixel as a small set of

its most relevant colors. Let 𝐺𝑆𝑖 ∈ S(𝑆𝑖, 7) represent the

set of 7 disjoint groups related to each RGB cube vertices,

whose colors are 𝑐𝑙 ∈ [0, 1]
3
, in which 1 ≤ 𝑙 ≤ 7. Then, we

populate each 𝐺𝑆𝑖

𝑙 ∈ 𝐺𝑆𝑖 by assigning every 𝑝 ∈ 𝑆𝑖 to its

most similar group using a mapping function 𝑀(𝑝) (Equa-

tion 5)

𝑀(𝑝) = argmin
𝑐𝑖∈𝑉

{‖𝑥− 𝑐𝑖‖1} (5)

The colors in RBD are used to reconstruct the original

image. The reconstruction error is measured by the Mean

Exponential Error (MEE) between the original and recon-

structed image. The MEE increases the error weight of het-

erogeneous colors based on the maximum distance between

the colors of the RBD. The MEE’s exponent interval varies

between one and two (the absolute or the mean error). Fi-

nally, SIRS defines segmentation quality as the Gaussian

weighted error of reconstruction using MEE.

MEE(𝑆) =
1

|I|
∑︁
𝑆𝑖∈𝑆

∑︁
𝑝∈𝑆𝑖

‖𝑅(𝑝) − 𝐼(𝑝)‖2−𝜓1 (6)

SIRS(𝑆) = exp−MEE(𝑆)

𝜎2 (7)
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Fig. 1 Number of generated superpixels in relation to the desired
number of superpixels (top row) and the number of not connected
superpixels in relation to the number of generated superpixels
(bottom row) on Birds, Sky, ECSSD, and Insects datasets.

6 Results

In this Section, we evaluate 21 superpixel methods accord-

ing to different aspects. First, we evaluate connectivity, ex-

amining the number of superpixels with distinct labels re-

gardless of their connectivity and the number of connected

components (Section 6.1). Some superpixel methods include

a merging step after the segmentation to ensure connec-

tivity. In this work, we include a merging step as post-

processing on methods that do not guarantee connectiv-

ity. In Section 6.2, we quantitatively evaluate object delin-

eation, color homogeneity, and compactness. Also, we sum-

marize these results with a boxplot analysis. As [73,90],

we evaluated the methods’ stability using the evaluation

measures’ minimum (min), maximum (max), and standard

deviation (std) in Section 6.3. Afterward, we assessed ro-

bustness and runtime in Sections 6.4 and 6.5, respectively.

Finally, in Section 6.6, we perform a qualitative evalua-
tion concerning the smoothness of the contours of superpix-

els, their compactness, and their adherence to the images’

boundaries. The superpixel methods and codes used in this

work are available in our superpixel evaluation benchmark

at https://github.com/IMScience-PPGINF-PucMinas/super-

pixel-benchmark.

6.1 Number of superpixels and connectivity

All superpixel methods evaluated in this work have a pa-

rameter for the desired number of superpixels. However,

most of these methods generate a different number of su-

perpixels than the desired one. Although control over the

number of superpixels is a desirable property, some works

reduce this control to produce a segmentation that better

suits the image content. As one may note in the first row

of Figure 1, only DISF, ODISF, SICLE, SH, and ERS

generate exactly the desired number of superpixels. Despite

this, most methods generate a number of superpixels close
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Fig. 2 Results for BR and UE on Birds, Sky, ECSSD, and Insects
datasets.

to the desired one. In contrast, LNSNet and DRW gener-
ated quantities farther from the desired ones. While DRW

usually produces fewer superpixels, LNSNet creates almost

twice the desired superpixels.

Superpixel connectivity is also an important property to

consider. However, many methods in the literature do not

guarantee it. As one may see in the second row of Figure 1,

LNSNet, CRS, and SEEDS do not guarantee the con-

nectivity of their superpixels. In particular, LNSNet gen-

erated a high number of unconnected superpixels in most

datasets. In contrast, CRS and SEEDS produces fewer

unconnected superpixels. For the quantitative and stability

experiments (Sections 6.2 and 6.3, respectively), we per-

form post-processing to enforce connectivity in LNSNet,

SEEDS, and CRS. Let the similarity between two super-

pixels as the euclidean distance between their average col-

ors. The merging step merges the smaller-area superpixels

with their most similar neighbor (considering 8-neighbor-

hood) until the number of superpixels reaches the number

of segmentation labels.
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6.2 Quantitative evaluation

6.2.1 Object delineation

As shown in Figure 2, the methods GRID, CRS, and

SEEDS reach the worst results in all datasets. According

to the evaluation with UE, most methods have low leak-

age. Similarly, the delineation measured by BR is generally

high. The best scores in both UE and BR were achieved by

SICLE, ODISF, DISF, LSC, ISF, GMMSP, SH, and

ERS. However, followed by GRID, ODISF and SICLE

obtained the lowest delineations on the Sky dataset. These

results can also be observed in the boxplot visualization

(bottom row in Figure 2). These results contrast with the

other datasets, in which SICLE and ODISF had the best

results. Furthermore, RSS has a competitive BR, but with

worse UE. This observation is more evident in the box-

plot results. In contrast, DAL-HERS, ETPS, IBIS, and

SLIC, obtained a low delineation, only superior to GRID,

SEEDS, and CRS. Their results are followed by SNIC,

SCALP, DRW, and LNSNet. One may see in the first

row of Figure 2 that DAL-HERS obtains low delineation

for a number of superpixels smaller than 400, approximately,

on Birds, ECSSD, and Insects datasets. However, DAL-

HERS presents a competitive delineation after 400 super-

pixels. These low results occur because this method may

generate tiny regions, resulting in segmentations with low

delineation and low color homogeneity.

6.2.2 Compactness

Figure 3 show the compactness evaluation. As expected,

GRID obtains the most compact segmentations. Aside from

GRID, the methods CRS and ETPS had the highest com-

pactness, followed by SCALP and SNIC. SLIC and IBIS

achieve similar compactness, usually lower than SCALP

and SNIC. All these methods have a parameter to deter-

mine the compactness. While CRS and ETPS produce

superpixels by optimizing the contours of a grid segmenta-

tion, the others use different approaches based on SLIC. In

contrast, LSC and GMMSP present similar and moderate

compactness. Among the evaluated methods, only SEEDS

had high variability in its compactness. More delineation-
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Fig. 3 Results for CO on Birds, Sky, ECSSD, and Insects
datasets.
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Fig. 4 Results for EV and SIRS on Birds, Sky, ECSSD, and In-
sects datasets.

focused methods, such as SICLE, ODISF, DISF, SH, and

DAL-HERS produced less compact segmentations.

6.2.3 Color homogeneity

When evaluating the color homogeneity (Figure 4) with EV

and SIRS, the results of the first measure were generally

higher and closer to each other compared to the second one.

However, their results show some similarities. GRID and

CRS had the worst results in all datasets in both measures,

followed by ODISF and SICLE. From these methods, only

ODISF and SICLE have an accurate delineation, and their

low color homogeneity is a result of fewer superpixels in

the non-salient image region. It is not easy to define the

best method on all datasets according to EV scores, but

DISF obtains the best results according to SIRS scores.

Finally, one may see that DISF, SH, ISF, LSC, RSS,

GMMSP, and SCALP achieve competitive results in both

color homogeneity measures.
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6.2.4 Overall

As one may see in Figures 2, 4, and 3, most path-based clus-

tering methods (ERGC, ISF, DISF, RSS, ODISF), and

SICLE had similar performance in object delineation, com-

pactness, and homogeneity. Among these methods, DISF

had better delineation and color homogeneity according to

all measures used. On the other hand, SICLE and ODISF

obtained a similar delineation on most datasets but with low

color homogeneity. The significant performance reduction

of SICLE and ODISF on Sky is due to the saliency maps

identifying wrong objects. Since the sky is not a salient re-

gion in this dataset, the saliency map is less reliable, being

necessary to fine-tune or switch the saliency map trustiness

in SICLE. Although path-based methods had optimal de-

lineation, their superpixels have low compactness. With a

similar clustering approach, ERS performs clustering based

on graphs and obtains excellent delineation on Sky and In-

sects datasets.

Region-based clustering approaches (SLIC, LSC, and

SCALP) had more variate results. While LSC achieved

better delineation and more homogeneous superpixels, SLIC

had superpixels with moderate compactness and worse de-

lineation. On the other hand, SCALP obtained a com-

petitive delineation with homogeneous and more compact

superpixels than SLIC. Methods that perform clustering

based on contour optimization (SEEDS, IBIS, CRS, and

ETPS) also reached different results due to the distinction

between their optimization functions. Among these, IBIS

achieved better object delineation and color homogeneity,

with results similar to SLIC in all evaluation measures.

On the other hand, CRS and SEEDS had the worst de-

lineation and homogeneity but greater compactness among

all methods. Therefore, concerning the main processing ap-

proaches, clustering based on contour evolution produced

the worst results in object delineation and color homogene-

ity but with higher compactness.

Regarding clustering with a dynamic center update (D-

RW and SNIC), they use strategies to adapt the number

of generated superpixels to the image content. Despite their

similarities, DRW and SNIC use different features and op-

timization functions, which explains the contrast in their

results. While DRW has better delineation and fewer su-

perpixels, SNIC generates more compact and homogeneous

superpixels. The lower color homogeneity of DRW com-

pared to SNIC is due to the smaller number of superpix-

els produced by DRW than the other methods. Concern-

ing hierarchical approaches (SH and DAL-HERS), they

have low compacity and high color homogeneity. However,

SH had competitive delineation in contrast with worse re-

sults with DAL-HERS. Finally, GMMSP and LNSNet,

unique in their clustering category, presented excellent de-

lineation with BR. Concerning UE and color homogene-
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Fig. 5 Results for minimum BR, maximum UE, and standard de-
viation of BR and UE on Birds, Sky, ECSSD, and Insects datasets.
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Fig. 6 Results for minimum and standard deviation of EV and
SIRS on Birds, Sky, ECSSD, and Insects datasets.

ity, LNSNet had heterogeneous superpixels with moder-

ate compactness and more leakage. On the other hand,

GMMSP achieved competitive results in all evaluated mea-

sures.
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6.3 Superpixels stability

6.3.1 Object delineation

As one may see in Figure 5, most methods present high

stability regarding object delineation, since most of them

present a performance that monotonically increases in BR

and decreases in UE. Most of the methods also present low

std BR and std UE. In contrast, DAL-HERS, SEEDS,

ETPS, and CRS show lower BR stability on all datasets.

Also, ODISF and SICLE only presents instability on the

Sky dataset due to its high and almost constant standard

deviations. Despite being a delineation-focused method, the

ODISF’s and SICLE’s performance of UE standard devi-

ation on the Sky dataset achieves worse results than GRID

for more than 200 superpixels, contrasting with its high sta-

bility on the other datasets. The ODISF’s and ODISF’s

instability explains their inferior mean BR and UE (Sec-

tion 6.2) performance on Sky. On the other hand, DAL-

HERS presented greater instability due to its creation of

tiny regions, as mentioned in Section 6.2. As one may note

in Figure 5, the low min BR of DAL-HERS indicates that

the tiny regions are created independent of the number of

superpixels. Based on the DAL-HERS results, we consider

that its low performance in this work results from some

bug. As shown in Figure 5, DISF, GMMSP, LSC, SH,

and ERS showed high stability. On the other hand, ISF

and RSS present stable and low std BR and std UE, but

with some instability in max UE and min BR. Concerning

min BR, GRID, CRS, and SEEDS had the worst results

while SH, ISF, RSS, GMMSP, DISF, LSC, and ERS

had the highest ones.

6.3.2 Color homogeneity

The color homogeneity stability evaluation with EV and

SIRS is presented in Figure 6. Concerning min EV and min

SIRS, most of the methods with the former had increas-

ing values while the second showed more rigorous mini-

mum scores with increasing values only in the Sky dataset.

In both minimum measures, the methods with the highest

minimum differ, except for DISF, which presents higher re-

sults in all datasets, followed by SH. Among the evaluations

with min EV, ODISF and SICLE had almost constant val-

ues and worse results than GRID in the Sky dataset. These

results are due to the saliency map and the concentration

of superpixels in the salient region, as aforementioned. Fur-

thermore, std SIRS and std EV also showed distinct vari-

ations. While the std EV results presented less stable re-

sults, the std SIRS evaluation presented more increasing

results, indicating greater instability in some methods. For

the std EV assessment, the methods DISF, SH, and LSC

showed high stability on all datasets. In addition, the meth-
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Fig. 7 Influence of average blur (top row) and salt and pepper
noise (bottom row) for 𝐾 ≈ 400 on Birds dataset.

ods ISF, RSS, and SCALP also showed high stability on

at least one dataset. Unlike std EV, in std SIRS the meth-

ods LNSNet, GRID, IBIS, ODISF, and SLIC showed

less stability on Birds and Insects datasets. On the other

hand, DISF showed high stability in SIRS, followed by SH

and ETPS.

6.4 Robustness

Noise and blur robustness evaluate, respectively, the sus-

ceptibility of the algorithm to strong and irrelevant edges

and potentially relevant but soft edges. Similar to [90], we

evaluated robustness against salt and pepper noise and av-

erage blur. In this experiment, we varied the average blur

filter size by {0, 5, 9, 13, 17} and the noise probability by

{0, 0.4, 0.08, 0.12, 0.16} in the Birds dataset images with ap-

proximately 400 superpixels. The evaluation measures used

were BR, UE, EV, SIRS, and the number of superpixels

produced (𝐾) in the segmentations.

As one may see in Figure 7, blur and noise generally

tend to have a similar impact. DISF, ERGC, RSS, ISF,

ODISF, SEEDS, and SH were robust in blur and noise.

On the other hand, DAL-HERS showed the lowest noise

robustness, followed by LNSNet and ERS. Despite being

the least robust to noise, DAL-HERS achieved consider-

able robustness to blur. A similar sensitivity to noise can

be observed in SICLE regarding homogeneity. However,

SICLES’s homogeneity highly increased with blur. Also, it

presents high robustness to noise and blur concerning delin-

eation. On the other hand, DRW was the most influenced

by blur. One can also see that some methods presented a

slightly better evaluation when adding blur or noise. That

is the case for LNSNet, IBIS, and SLIC with blur. The

same occurred less perceptibly in SEEDS, DAL-HERS,

ERGC, and ERS.

As shown in Figure 7, some methods try to compen-

sate for noise and blur by producing more or fewer super-

pixels. Among the evaluated methods, LNSNet was the

most impacted in the number of superpixels generated, es-

pecially when adding noise. As seen in Section 6.1, LNSNet

produced superpixels that were more discrepant in quan-

tity, many of those disconnected. The second with the most
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Fig. 8 Runtime in seconds on Birds, Sky, ECSSD, and Insects
datasets.

influenced number of superpixels was DAL-HERS when

adding noise. In addition to these, IBIS, DRW, SLIC,

GMMSP, and SCALP showed a moderate susceptibility

to the number of superpixels. Finally, the addition of noise

or blur did not modify the number of superpixels gener-

ated in the CRS, DISF, ERGC, ERS, ETPS, SICLE,

ODISF, RSS, SH, and SNIC methods.

6.5 Runtime

Execution time may be a critical aspect in superpixel meth-

ods, especially for real-time applications. Figure 8 shows

the CPU1 and GPU2 time in seconds without the post-

processing of Section 6.1. For SCALP and ODISF, we do

not include the edge maps and saliency maps computation.
As one may see in Figure 8, due to the images of the ECSSD

and Sky datasets being generally smaller than the others,

the runtime in these datasets was usually shorter.

According to the CPU runtimes on the first and second

rows in Figure 8, methods whose main processing is bound-

ary evolution clustering (except CRS) achieved the low-

est execution times. SLIC performed similarly, while other

region-based clustering methods (LSC and SCALP) var-

ied in efficiency. Among these, LSC has a runtime of up to

0.4 seconds, while SCALP needs approximately twice as

long. Path-based clustering methods (ERGC, ISF, RSS,

DISF, SICLE and ODISF) also showed varied efficiency.

In this category, the highest runtimes were achieved by

SICLE, ODISF, and DISF, while ISF and ERGC re-

quired less than 1 second per image. In contrast, RSS had

1 CPU Intel® CoreTM i5-7200U @ 2.5GHz x 4, 64bit with
24GB RAM.
2 CPU Intel® CoreTM i7-8700 @ 3.20GHz x 12, 64bit with

31GB RAM and a GPU Nvidia GeForce GTX 1080 with 8GB
RAM.

a competitive execution time (less than 0.1 seconds). Sim-

ilarly, SH, the only method with hierarchical clustering in

CPU execution, also achieved competitive runtime.

Methods with a dynamic center update clustering cate-

gory (DRW and SNIC) had distinct runtimes. SNIC was

the most time-consuming among all methods running on

the CPU, while DRW was more efficient, with execution

times of up to 1 second per image. Considering graph-based

clustering, ERS required a high execution time, similar to

ODISF. And the GMMSP, the only one with clustering

based on data distribution, achieved similar efficiency to

SCALP. As one may see on the bottom row of Figure 8,

only LNSNet and DAL-HERS were executed on a GPU.

The former had the worst execution time of all evaluated

methods, while the second had an excellent execution time

(less than 0.3 seconds per image). Finally, SH and DAL-

HERS were the only ones whose execution time was con-

stant since they produced a hierarchy of superpixels in a

single execution. From cuts on the hierarchy, they produce

different numbers of superpixels.

6.6 Qualitative evaluation

In this section, we evaluated the segmentations’ visual qual-

ity regardless of their ground-truth since the image object

may vary according to the application. We assess visual

quality based on the superpixels’ adherence to the image

boundaries, smoothness, compactness, and regularity. The

smoothness is inversely related to the superpixel’s boundary

length. On the other hand, the superpixels’ compactness re-

lates to their area. Moreover, regularity refers to their shape,

size, and arrangement. Figures 9 and 10 present segmenta-

tions with approximately 100 and 700 superpixels on Birds,

Sky, ECSSD, and Insects datasets.

6.6.1 Path-based clustering

Relative to path-based clustering methods, RSS (Figure 9)

does not produce compact superpixels. Instead, their super-

pixels may have elongated and thin shapes at strong image

boundaries but with an optimal delineation. However, by

reducing the number of superpixels, the delineation qual-

ity dramatically decreases at smooth image boundaries. In

contrast, ISF produces regular superpixels in homogeneous

regions. However, it has a high sensitivity to color varia-

tions, leading to non-smooth superpixels, highly variable in

size, on less homogeneous. For a higher number of super-

pixels, ISF has excellent delineation. However, reducing the

number of superpixels implies a worse delineation.

As we may observe in Figure 9, DISF achieved an im-

proved segmentation, in which its superpixels are neither

compact nor smooth, but they present a high adherence to

the image boundaries. DISF also maintains good adherence
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to the image boundaries and generates larger superpixels

in more homogeneous regions, even with a smaller num-

ber of them. Based on DISF, both ODISF and SICLE

present different results from the other methods. Both pro-

duce more superpixels on the salient area identified by the

saliency map, which can improve the delineation of this re-

gion. However, their superpixels are neither compact nor

smooth. Due to this, there is a low number of superpixels

in regions not identified by the saliency map, leading to a

worse delineation in these regions but a superior delineation

in the salient ones. Also, by fine-tuning the saliency maps,

their results can improve. Between SICLE and ODISF,

we can observe more accurate delineation in SICLE seg-

mentations. Similar to the previous ones, the segmentation

with ERGC has good adherence to the image boundaries.

In addition, its superpixels have some regularity, without

significant variations in size, and their contours are smooth.

However, for a smaller number of superpixels, the boundary

adherence of ERGC segmentation reduces significantly.

6.6.2 Region-based clustering

Regarding the region-based methods, SLIC (Figure 9) pro-

duces very compact superpixels with good adherence to the

image boundaries. Its superpixels are also regular in more

homogeneous regions. However, SLIC generates superpix-

els with slightly non-smooth contours in less homogeneous

regions. By reducing the number of superpixels, the com-

pactness is slightly reduced, even in complex areas of the im-

age. On the other hand, the delineation is more affected. In

contrast, SCALP produces superpixels with excellent de-

lineation that are more compact, smooth, and regular than

SLIC. The compactness of SCALP segmentation reduces

for a reduced number of superpixels, and its delineation also

reduces slightly. However, the superpixels’ contours remain

smooth. Unlike SLIC and SCALP, LSC only produces

smooth superpixels in more homogeneous regions. However,

its high sensitivity to minor color variations results in su-

perpixels with less smooth contours and compactness in re-

gions with simpler textures. Furthermore, LSC may gener-

ate more elongated and thin superpixels in the strong image

boundaries, obtaining a great delineation but without com-

pactness. For a reduced number of superpixels, the visual

quality of LSC delineation suffers a slight reduction, and

its superpixels have significantly fewer smooth contours in

regions with textures.

6.6.3 Dynamic center update clustering

With a segmentation visually very similar to SLIC, SNIC

(Figure 9) also produces superpixels with high compactness

and better delineation. In contrast, as one may see in Fig-

ure 10, DRW does not generate compact superpixels. Also,

the number of superpixels produced is noticeably smaller

than expected. Despite this, DRW generates superpixels

with good adherence and fewer superpixels in homogeneous

regions.

6.6.4 Boundary evolution clustering

Similarly to DRW, the superpixels created by SEEDS (Fig-

ure 10) are not compact and have non-smooth boundaries.

The segmentation with a higher number of superpixels in

SEEDS has moderate delineation with small leakage re-

gions. For a reduced number of superpixels, the compact-

ness and smoothness do not increase in SEEDS, and there

is a noticeable reduction in delineation. In contrast to SE-

EDS, CRS generates superpixels very compact, regular,

and with smooth contours independent of the number of

superpixels, but with low adherence to the image bound-

aries. In a segmentation with 100 superpixels, the image

boundaries seem to be almost completely ignored. Similarly,

ETPS produces very regular, smooth, and compact super-

pixels. For a higher number of superpixels, the segmentation

generated with ETPS has high adherence to the bound-

aries. The compactness, smoothness, and regularity reduce

slightly by reducing the number of superpixels, but the de-

lineation suffers drastically.

IBIS also generates significantly compact pixels, whose

compactness and smoothness vary depending on the re-

gion’s homogeneity. Also, it produces regular superpixels

at the homogeneous image regions. For a higher number of

superpixels, their compactness in homogeneous regions is

very high, and IBIS has good adherence to the image con-

tours, even in more complex regions. However, its sensitivity

to color variations reduces compactness and smoothness in

less homogeneous areas. Also, by reducing the number of su-

perpixels, its adherence to contours is significantly reduced.

6.6.5 Hierarcical clustering

Regarding the hierarchical methods, SH has an excellent

delineation, but its superpixels are not regular nor compact

and have non-smooth contours in more textured regions.

In addition, it generates elongated and thin superpixels at

some of the strong image boundaries. DAL-HERS also

has superb delineation but generates rough superpixels and

some tiny ones, resulting in visibly poor segmentation.

6.6.6 Others

LNSNet produces a significantly higher number of super-

pixels than desired. Similarly to ISF, LNSNet produces

compact superpixels in homogeneous regions, but its sen-

sitivity to color variations implies very rough superpixels.

It has good delineation when the number of superpixels is
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higher. However, their non-smooth contours do not have

a high delineation even in regions with a more prominent

boundary, causing small leaks. In ERS, for a higher num-

ber of superpixels, they do not vary much in size, but their

shape varies considerably, and they have low smoothness

but good boundary adherence. By reducing the number of

superpixels, its boundary adherence reduces, but not drasti-

cally. In comparison, GMMSP produces significantly more

compact superpixels in homogeneous regions. In less homo-

geneous ones, GMMSP produces fewer compact superpix-

els but usually with smoother contours. By reducing the

number of superpixels, the compactness of the less homoge-

neous image region barely changes. However, the compact-

ness and smoothness drastically reduce in less homogeneous

regions.

6.6.7 Overall

As one may see, CRS, ERGC, ETPS, SCALP, SLIC,

SNIC, IBIS, and GMMSP produced visibly smooth, com-

pact, and regular superpixels. These properties are notice-

able on CRS, SCALP, and ETPS. Nevertheless, high

compactness may lead to a worse delineation, as in CRS

and ETPS. Conversely, ERGC, IBIS, SNIC, and SLIC

had medium boundary adherence, with worse results on

smooth image boundaries. Among these methods, only S-

CALP and GMMSP achieved excellent boundary delin-

eation.

Concerning methods with less (or no) compactness and

smoothness, LNSNet and SEEDS had the worse delin-

eations. In contrast, DRW, ERS, RSS, LSC, and ISF

had some compactness and smoothness along with good

boundary adherence, especially ISF and LSC. One may ob-

serve the best delineation in DISF, LSC, ODISF, SICLE,

DAL-HERS, ISF, and SH, although most do not present

compactness or regularity. In particular, DISF, ODISF,

SICLE, and GMMSP had visually better adherence to

the image boundaries. Among these methods, ODISF and

SICLE had exceptional adherence to image boundaries be-

longing to a specific image region, indicated as an object in

the saliency map, due to the high number of superpixels in

this region. Conversely, they generate fewer superpixels in

non-salient image regions, reducing their color homogene-

ity. As observed in the quantitative evaluation, when the

saliency map corresponds to the desired object in the im-

age, the ODISF’s and SICLE’s delineations outperform

the other methods.

In relation to the main processing categories, methods

with contour evolution-based clustering usually produce the

most compact and regular superpixels, although they have

low boundary adherence. Conversely, those with neighborhood-

based clustering usually had good delineation with high

compactness and regularity. Similarly, dynamic-center-update

clustering methods also achieved good boundary adherence.

However, only SNIC showed compactness and regularity,

whereas DRW only had smooth superpixels contours. Fi-

nally, GMMSP had great compactness and competitive

delineation. Hierarchical methods, path-based methods, LN-

SNet, and ERS, produced superpixels with low compact-

ness. Among these, only LNSNet had poor delineation.

Also, the superpixels in both LNSNet and hierarchical

methods are neither compact nor smooth. Conversely, ERS

and most path-based methods generated superpixels with

low compactness and smoothness but with excellent bound-

ary adherence.

7 Conclusions

In this work, we present a taxonomy for superpixel methods,

which categorizes them according to their processing steps

and the level of abstraction of the features used. Our tax-

onomy separates each superpixel approach into up to three

processing steps and categorizes the task performed at each

one. We demonstrate our taxonomy and inform other sig-

nificant properties of 52 of the most recently and commonly

used superpixel methods. We also provide a comprehensive

literature review encompassing these methods. We present

an extensive comparison among 20 superpixel methods con-

sidering: superpixels’ connectivity, control of the number

of superpixels, compactness, adherence to object contours,

color homogeneity, stability, robustness to noise and blur,

execution time, and visual quality.

According to our experiments, methods with clustering

based on contour evolution generally present greater effi-

ciency, compactness, and regularity. Nevertheless, they have

worse boundary adherence and color homogeneity. In addi-

tion, methods with dynamic-update-clustering are less effi-

cient and generate slightly less compact and regular super-

pixels. In addition, they have better delineation and homo-

geneity than those based on contour evolution. Conversely,

methods with region-based clustering present more varied

performances. For instance, LSC achieved good boundary

adherence, compactness, and smoothness. On the other hand,

SLIC and SCALP had higher compactness but worse de-

lineation than LSC.

Regarding methods with clustering based on data dis-

tribution, we evaluated only GMMSP, which obtained a

competitive delineation, good compactness, and smooth su-

perpixels’ contours, although no regularity. In addition, E-

RS, the only evaluated method that performs graph-based

clustering, had a similar delineation to GMMSP but with

worse efficiency, compactness, and color homogeneity. Hier-

archical methods also produced superpixels with excellent

boundary adherence. They have low execution time, but

their superpixels were neither visually compact nor smooth.
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LNSNet, the only evaluated method which performs clus-

tering with a CNN, presents a visually poor delineation and

the worst efficiency. In addition, it has color homogeneity

than methods with hierarchical clustering. In our evalua-

tion, the path-based clustering methods generally had the

best delineation and the most homogeneous superpixels.

However, they had varied efficiency, low compactness, and

low smoothness.

Most evaluated methods produce connected superpixels.

Also, they usually generate superpixels in a similar number

to the desired one. In particular, DISF, ODISF, SICLE,

SH, and ERS generated the exact number of desired su-

perpixels. In contrast, among the evaluated methods, only

LNSNet, SEEDS, and CRS produced non-connected su-

perpixels. LNSNet creates almost twice the superpixels,

many of these disconnected. On the other hand, the num-

ber of superpixels produced by DRW is usually lower than

desired.

When evaluating robustness, most methods achieved go-

od robustness to noise and blur. The worst results were ob-

served in DAL-HERS, followed by SICLE, LNSNet, and

ERS. In contrast, the most robust methods were DISF,

ERGC, RSS, ISF, ODISF, SEEDS, and SH. We could

also see that some evaluated methods produce a different

number of superpixels according to the addition of noise

or blur. For 𝐾 ≈ 400, LNSNet had more sensitivity in

this criterion, creating more than 30000 superpixels. DAL-

HERS also produced significantly more superpixels, reach-

ing almost 1500 when increasing noise. In addition, the

number of superpixels produced by IBIS, DRW, SLIC,

GMMSP, and SCALP is slightly different from the de-

sired one when increasing noise or blur.

Due to the trade-off between delineation and compact-

ness, it is hard to establish which method had the best

performance. Considering object delineation and color ho-

mogeneity, DISF, ISF, LSC, GMMSP, and SH showed

the best average performance and stability. SH has greater

efficiency, followed by the LSC and ISF. On the other

hand, GMMSP has more compact superpixels, followed

by ISF. When delineation and homogeneity are more criti-

cal than compactness, DISF is the most recommended. We

also recommend SICLE and ODISF when only object de-

lineation is crucial. Despite not having good results when

the saliency map does not find the desired object, their su-

perior performance in other datasets may indicate that fine-

tuning the saliency detector can improve the results. How-

ever, for greater compactness at the expense of delineation,

both SCALP and SLIC are recommended. Between these,

SLIC has more compactness and low execution time but

worse delineation and less color homogeneity.
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10. Belém, F., Guimarães, S.J.F., Falcão, A.X.: Superpixel seg-
mentation by object-based iterative spanning forest. In:
Iberoamerican Congress on Pattern Recognition, pp. 334–
341. Springer (2018)

11. Belém, F., Perret, B., Cousty, J., Guimarães, S.J., Falcão,
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do Patroćınio, Z.K., Guimarães, S.J.F.: Towards interactive
image segmentation by dynamic and iterative spanning for-
est. In: International Conference on Discrete Geometry and
Mathematical Morphology, pp. 351–364. Springer (2021)

19. Buyssens, P., Gardin, I., Ruan, S.: Eikonal based region
growing for superpixels generation: Application to semi-
supervised real time organ segmentation in ct images.
IRBM 35(1), 20–26 (2014). DOI https://doi.org/10.1016/
j.irbm.2013.12.007. URL https://www.sciencedirect.com/

science/article/pii/S1959031813001437. Biomedical im-
age segmentation using variational and statistical approaches

20. Chai, D.: Rooted spanning superpixels. International Jour-
nal of Computer Vision 128(12), 2962–2978 (2020)

21. Chen, J., Li, Z., Huang, B.: Linear spectral clustering su-
perpixel. IEEE Transactions on Image Processing 26(7),
3317–3330 (2017). DOI 10.1109/TIP.2017.2651389

22. Condori, M.A., Cappabianco, F.A., Falcão, A.X., Miranda,
P.A.: An extension of the differential image foresting trans-
form and its application to superpixel generation. Jour-
nal of Visual Communication and Image Representation 71,
102,748 (2020). DOI https://doi.org/10.1016/j.jvcir.2019.
102748. URL https://www.sciencedirect.com/science/

article/pii/S1047320319303694
23. Condori, M.A.T., Cappabianco, F.A.M., Falcão, A.X.,

De Miranda, P.A.V.: Extending the differential image forest-
ing transform to root-based path-cost functions with appli-
cation to superpixel segmentation. In: 2017 30th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI),
pp. 7–14. Ieee (2017)

24. Conrad, C., Mertz, M., Mester, R.: Contour-relaxed super-
pixels. In: Energy Minimization Methods in Computer Vi-
sion and Pattern Recognition, pp. 280–293. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013)

25. Di, S., Liao, M., Zhao, Y., Li, Y., Zeng, Y.: Image superpixel
segmentation based on hierarchical multi-level li-slic. Optics
& Laser Technology 135, 106,703 (2021)

26. Falcão, A.X., Bergo, F.P.: Interactive volume segmentation
with differential image foresting transforms. IEEE Transac-
tions on Medical Imaging 23(9), 1100–1108 (2004)

27. Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image
foresting transform: Theory, algorithms, and applications.
IEEE transactions on pattern analysis and machine intel-
ligence 26(1), 19–29 (2004)

28. Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral–
spatial classification of hyperspectral images with a
superpixel-based discriminative sparse model. IEEE Trans-
actions on Geoscience and Remote Sensing 53(8), 4186–4201
(2015)

29. Francis, J., Baburaj, M., George, S.N.: An 𝑙1/2 and graph
regularized subspace clustering method for robust image seg-
mentation. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 18(2), 1–24
(2022)

30. Galvão, F.L., Falcão, A.X., Chowdhury, A.S.: Risf: recursive
iterative spanning forest for superpixel segmentation. In:
2018 31st SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI), pp. 408–415. IEEE (2018)
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